A034835 Expansion of 1/(1-49*x)^(1/7); related to sept-factorial numbers A045754.
1, 7, 196, 6860, 264110, 10722866, 450360372, 19365495996, 847240449825, 37560993275575, 1682732498745760, 76028913806967520, 3459315578217022160, 158330213003009860400, 7283189798138453578400, 336483368673996555322080, 15604416222256590253061460, 726064307753233111186565580
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..445
- Armin Straub, Victor H. Moll, and Tewodros Amdeberhan, The p-adic valuation of k-central binomial coefficients, Acta Arith. 140 (1) (2009), 31-41, eq (1.10).
- Index entries for sequences related to factorial numbers.
Programs
-
Magma
Q:=Rationals(); R
:=PowerSeriesRing(Q, 40); Coefficients(R!(1/(1 - 49*x)^(1/7))); // G. C. Greubel, Feb 22 2018 -
Mathematica
CoefficientList[Series[1/(1 - 49*x)^(1/7), {x,0,50}], x] (* G. C. Greubel, Feb 22 2018 *)
-
PARI
my(x='x+O('x^30)); Vec(1/(1 - 49*x)^(1/7)) \\ G. C. Greubel, Feb 22 2018
Formula
G.f.: (1-49*x)^(-1/7).
D-finite with recurrence: n*a(n) + 7*(-7*n+6)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
a(n) ~ 7^(2*n) * n^(-6/7) / Gamma(1/7). - Amiram Eldar, Aug 18 2025
Comments