A257609
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 2*x + 2.
Original entry on oeis.org
1, 2, 2, 4, 16, 4, 8, 88, 88, 8, 16, 416, 1056, 416, 16, 32, 1824, 9664, 9664, 1824, 32, 64, 7680, 76224, 154624, 76224, 7680, 64, 128, 31616, 549504, 1999232, 1999232, 549504, 31616, 128, 256, 128512, 3739648, 22587904, 39984640, 22587904, 3739648, 128512, 256
Offset: 0
Triangle begins as:
1;
2, 2;
4, 16, 4;
8, 88, 88, 8;
16, 416, 1056, 416, 16;
32, 1824, 9664, 9664, 1824, 32;
64, 7680, 76224, 154624, 76224, 7680, 64;
128, 31616, 549504, 1999232, 1999232, 549504, 31616, 128;
256, 128512, 3739648, 22587904, 39984640, 22587904, 3739648, 128512, 256;
Similar sequences listed in
A256890.
-
function T(n,k,a,b)
if k lt 0 or k gt n then return 0;
elif k eq 0 or k eq n then return 1;
else return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b);
end if; return T;
end function;
[T(n,k,2,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 21 2022
-
A257609:= func< n,k | 2^n*EulerianNumber(n+1, k) >;
[A257609(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 17 2025
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,2,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 21 2022 *)
-
def T(n,k,a,b): # A257609
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,2,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022
A257610
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 2.
Original entry on oeis.org
1, 2, 2, 4, 20, 4, 8, 132, 132, 8, 16, 748, 2112, 748, 16, 32, 3964, 25124, 25124, 3964, 32, 64, 20364, 256488, 552728, 256488, 20364, 64, 128, 103100, 2398092, 9670840, 9670840, 2398092, 103100, 128, 256, 518444, 21246736, 147146804, 270783520, 147146804, 21246736, 518444, 256
Offset: 0
Triangle begins as:
1;
2, 2;
4, 20, 4;
8, 132, 132, 8;
16, 748, 2112, 748, 16;
32, 3964, 25124, 25124, 3964, 32;
64, 20364, 256488, 552728, 256488, 20364, 64;
128, 103100, 2398092, 9670840, 9670840, 2398092, 103100, 128;
256, 518444, 21246736, 147146804, 270783520, 147146804, 21246736, 518444, 256;
See similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,3,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
def T(n,k,a,b): # A257610
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,3,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
A257620
Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 3*n + 3.
Original entry on oeis.org
1, 3, 3, 9, 36, 9, 27, 297, 297, 27, 81, 2106, 5346, 2106, 81, 243, 13851, 73386, 73386, 13851, 243, 729, 87480, 868239, 1761264, 868239, 87480, 729, 2187, 540189, 9388791, 34158753, 34158753, 9388791, 540189, 2187, 6561, 3293622, 95843088, 578903274, 1024762590, 578903274, 95843088, 3293622, 6561
Offset: 0
Array t(n,k) begins as:
1, 3, 9, 27, 81, 243, ...;
3, 36, 297, 2106, 13851, 87480, ...;
9, 297, 5346, 73386, 868239, 9388791, ...;
27, 2106, 73386, 1761264, 34158753, 578903274, ...;
81, 13851, 868239, 34158753, 1024762590, 25791697782, ...;
243, 87480, 9388791, 578903274, 25791697782, 928501120152, ...;
729, 540189, 95843088, 8959544136, 575025893586, 28788563928042, ...;
Triangle T(n,k) begins as:
1;
3, 3;
9, 36, 9;
27, 297, 297, 27;
81, 2106, 5346, 2106, 81;
243, 13851, 73386, 73386, 13851, 243;
729, 87480, 868239, 1761264, 868239, 87480, 729;
2187, 540189, 9388791, 34158753, 34158753, 9388791, 540189, 2187;
Similar sequences listed in
A256890.
-
A257620:= func< n,k | 3^n*EulerianNumber(n+1, k) >;
[A257620(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 17 2025
-
t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
T[n_, k_, p_, q_]= t[n-k, k, p, q];
Table[T[n,k,3,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 28 2022 *)
-
from sage.all import *
from sage.combinat.combinat import eulerian_number
def A257620(n,k): return pow(3,n)*eulerian_number(n+1,k)
print(flatten([[A257620(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 17 2025
-
@CachedFunction
def t(n,k,p,q):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
def A257620(n,k): return t(n-k,k,3,3)
flatten([[A257620(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 28 2022
A257611
Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1) and f(n) = 2*n + 3.
Original entry on oeis.org
1, 3, 3, 9, 30, 9, 27, 213, 213, 27, 81, 1308, 2982, 1308, 81, 243, 7431, 32646, 32646, 7431, 243, 729, 40314, 310263, 587628, 310263, 40314, 729, 2187, 212505, 2695923, 8701545, 8701545, 2695923, 212505, 2187, 6561, 1099704, 22059036, 113360904, 191433990, 113360904, 22059036, 1099704, 6561
Offset: 0
Array t(n,k) begins as:
1, 3, 9, 27, 81, 243, ...;
3, 30, 213, 1308, 7431, 40314, ...;
9, 213, 2982, 32646, 310263, 2695923, ...;
27, 1308, 32646, 587628, 8701545, 113360904, ...;
81, 7431, 310263, 8701545, 191433990, 3579465642, ...;
243, 40314, 2695923, 113360904, 3579465642, 93066106692, ...;
729, 212505, 22059036, 1351133676, 59641127202, 2104476295026, ...;
Triangle T(n,k) begins as:
1;
3, 3;
9, 30, 9;
27, 213, 213, 27;
81, 1308, 2982, 1308, 81;
243, 7431, 32646, 32646, 7431, 243;
729, 40314, 310263, 587628, 310263, 40314, 729;
2187, 212505, 2695923, 8701545, 8701545, 2695923, 212505, 2187;
Similar sequences listed in
A256890.
-
t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
T[n_, k_, p_, q_]= t[n-k, k, p, q];
Table[T[n,k,2,3], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 28 2022 *)
-
f(x) = 2*x + 3;
T(n, k) = t(n-k, k);
t(n, m) = if (!n && !m, 1, if (n < 0 || m < 0, 0, f(m)*t(n-1,m) + f(n)*t(n,m-1)));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print();); \\ Michel Marcus, May 06 2015
-
@CachedFunction
def t(n,k,p,q):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
def A257611(n,k): return t(n-k,k,2,3)
flatten([[A257611(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 28 2022
A257180
Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(x) = x + 3.
Original entry on oeis.org
1, 3, 3, 9, 24, 9, 27, 141, 141, 27, 81, 726, 1410, 726, 81, 243, 3471, 11406, 11406, 3471, 243, 729, 15828, 81327, 136872, 81327, 15828, 729, 2187, 69873, 533259, 1390521, 1390521, 533259, 69873, 2187, 6561, 301362, 3295152, 12609198, 19467294, 12609198, 3295152, 301362, 6561, 19683, 1277619, 19489380, 105311556, 237144642, 237144642, 105311556, 19489380, 1277619, 19683
Offset: 0
Array t(n,k) begins as:
1, 3, 9, 27, 81, 243, ... A000244;
3, 24, 141, 726, 3471, 15828, ...;
9, 141, 1410, 11406, 81327, 533259, ...;
27, 726, 11406, 136872, 1390521, 12609198, ...;
81, 3471, 81327, 1390521, 19467294, 237144642, ...;
243, 15828, 533259, 12609198, 237144642, 3794314272, ...;
729, 69873, 3295152, 105311556, 2607816498, 53824862658, ...;
Triangle T(n,k) begins as:
1;
3, 3;
9, 24, 9;
27, 141, 141, 27;
81, 726, 1410, 726, 81;
243, 3471, 11406, 11406, 3471, 243;
729, 15828, 81327, 136872, 81327, 15828, 729;
2187, 69873, 533259, 1390521, 1390521, 533259, 69873, 2187;
6561, 301362, 3295152, 12609198, 19467294, 12609198, 3295152, 301362, 6561;
Similar sequences listed in
A256890.
-
f[n_]:= n+3;
t[n_, k_]:= t[n,k]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, f[k]*t[n-1,k] +f[n]*t[n,k-1]]];
T[n_, k_]= t[n-k, k];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
-
f(x) = x + 3;
T(n, k) = t(n-k, k);
t(n, m) = {if (!n && !m, return(1)); if (n < 0 || m < 0, return (0)); f(m)*t(n-1,m) + f(n)*t(n,m-1);}
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print(););} \\ Michel Marcus, Apr 23 2015
-
def f(n): return n+3
@CachedFunction
def t(n,k):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return f(k)*t(n-1, k) + f(n)*t(n, k-1)
def A257627(n,k): return t(n-k,k)
flatten([[A257627(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 22 2022
A257612
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 4*x + 2.
Original entry on oeis.org
1, 2, 2, 4, 24, 4, 8, 184, 184, 8, 16, 1216, 3680, 1216, 16, 32, 7584, 53824, 53824, 7584, 32, 64, 46208, 674752, 1507072, 674752, 46208, 64, 128, 278912, 7764096, 33244544, 33244544, 7764096, 278912, 128, 256, 1677312, 84892672, 636233728, 1196803584, 636233728, 84892672, 1677312, 256
Offset: 0
Triangle begins as:
1;
2, 2;
4, 24, 4;
8, 184, 184, 8;
16, 1216, 3680, 1216, 16;
32, 7584, 53824, 53824, 7584, 32;
64, 46208, 674752, 1507072, 674752, 46208, 64;
128, 278912, 7764096, 33244544, 33244544, 7764096, 278912, 128;
See similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,4,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
f(x) = 4*x + 2;
T(n, k) = t(n-k, k);
t(n, m) = if (!n && !m, 1, if (n < 0 || m < 0, 0, f(m)*t(n-1,m) + f(n)*t(n,m-1)));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print();); \\ Michel Marcus, May 06 2015
-
def T(n,k,a,b): # A257612
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,4,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
A257614
Triangle read by rows: T(n, k) = t(n-k, k), where t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(n) = 5*n + 2.
Original entry on oeis.org
1, 2, 2, 4, 28, 4, 8, 244, 244, 8, 16, 1844, 5856, 1844, 16, 32, 13260, 101620, 101620, 13260, 32, 64, 93684, 1511160, 3455080, 1511160, 93684, 64, 128, 657836, 20663388, 91981880, 91981880, 20663388, 657836, 128, 256, 4609588, 269011408, 2121603436, 4047202720, 2121603436, 269011408, 4609588, 256
Offset: 0
Array t(n,k) begins as:
1, 2, 4, 8, 16, ... A000079;
2, 28, 244, 1844, 13260, ...;
4, 244, 5856, 101620, 1511160, ...;
8, 1844, 101620, 3455080, 91981880, ...;
16, 13260, 1511160, 91981880, 4047202720, ...;
32, 93684, 20663388, 2121603436, 146321752612, ...;
64, 657836, 269011408, 44675623468, 4648698508440, ...;
Triangle T(n,k) begins as:
1;
2, 2;
4, 28, 4;
8, 244, 244, 8;
16, 1844, 5856, 1844, 16;
32, 13260, 101620, 101620, 13260, 32;
64, 93684, 1511160, 3455080, 1511160, 93684, 64;
128, 657836, 20663388, 91981880, 91981880, 20663388, 657836, 128;
Similar sequences listed in
A256890.
-
t[n_, k_, p_, q_]:= t[n, k, p, q] = If[n<0 || k<0, 0, If[n==0 && k==0, 1, (p*k+q)*t[n-1,k,p,q] + (p*n+q)*t[n,k-1,p,q]]];
T[n_, k_, p_, q_]= t[n-k, k, p, q];
Table[T[n,k,5,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 01 2022 *)
-
@CachedFunction
def t(n,k,p,q):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return (p*k+q)*t(n-1,k,p,q) + (p*n+q)*t(n,k-1,p,q)
def A257614(n,k): return t(n-k,k,5,2)
flatten([[A257614(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 01 2022
A257616
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 6*x + 2.
Original entry on oeis.org
1, 2, 2, 4, 32, 4, 8, 312, 312, 8, 16, 2656, 8736, 2656, 16, 32, 21664, 175424, 175424, 21664, 32, 64, 174336, 3019200, 7016960, 3019200, 174336, 64, 128, 1397120, 47847552, 218838400, 218838400, 47847552, 1397120, 128, 256, 11182592, 722956288, 5907889664, 11379596800, 5907889664, 722956288, 11182592, 256
Offset: 0
Triangle begins as:
1;
2, 2;
4, 32, 4;
8, 312, 312, 8;
16, 2656, 8736, 2656, 16;
32, 21664, 175424, 175424, 21664, 32;
64, 174336, 3019200, 7016960, 3019200, 174336, 64;
128, 1397120, 47847552, 218838400, 218838400, 47847552, 1397120, 128;
Similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,6,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 21 2022 *)
-
def T(n,k,a,b): # A257610
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,6,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022
A257617
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 7*x + 2.
Original entry on oeis.org
1, 2, 2, 4, 36, 4, 8, 388, 388, 8, 16, 3676, 12416, 3676, 16, 32, 33564, 283204, 283204, 33564, 32, 64, 303260, 5538184, 13027384, 5538184, 303260, 64, 128, 2732156, 99831564, 465775352, 465775352, 99831564, 2732156, 128
Offset: 0
1;
2, 2;
4, 36, 4;
8, 388, 388, 8;
16, 3676, 12416, 3676, 16;
32, 33564, 283204, 283204, 33564, 32;
64, 303260, 5538184, 13027384, 5538184, 303260, 64;
128, 2732156, 99831564, 465775352, 465775352, 99831564, 2732156, 128;
Similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,7,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
-
def T(n,k,a,b): # A257617
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,7,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022
A257619
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 9*x + 2.
Original entry on oeis.org
1, 2, 2, 4, 44, 4, 8, 564, 564, 8, 16, 6436, 22560, 6436, 16, 32, 71404, 637844, 637844, 71404, 32, 64, 786948, 15470232, 36994952, 15470232, 786948, 64, 128, 8660012, 346391196, 1660722424, 1660722424, 346391196, 8660012, 128
Offset: 0
Triangle begins as:
1;
2, 2;
4, 44, 4;
8, 564, 564, 8;
16, 6436, 22560, 6436, 16;
32, 71404, 637844, 637844, 71404, 32;
64, 786948, 15470232, 36994952, 15470232, 786948, 64;
128, 8660012, 346391196, 1660722424, 1660722424, 346391196, 8660012, 128;
Similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,9,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 24 2022 *)
-
f(x) = 9*x + 2;
t(n, m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, f(m)*t(n-1,m) + f(n)*t(n,m-1)));
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", "); ); print(); ); } \\ Michel Marcus, May 23 2015
-
def T(n,k,a,b): # A257619
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,9,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 24 2022
Showing 1-10 of 24 results.
Comments