cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A216703 a(n) = Product_{k=1..n} (49 - 7/k).

Original entry on oeis.org

1, 42, 1911, 89180, 4213755, 200574738, 9594158301, 460519598448, 22162505675310, 1068725273676060, 51619430718553698, 2496503376570051576, 120872371815599997138, 5857661095679076784380, 284096563140435224042430, 13788153197749122873525936
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(49-7/k, k=1.. n), n=0..20);
    seq((7^n/n!)*product(7*k+6, k=0.. n-1), n=0..20);
  • Mathematica
    Table[49^n * Pochhammer[6/7, n] / n!, {n, 0, 15}] (* Amiram Eldar, Aug 17 2025 *)

Formula

From Seiichi Manyama, Jul 17 2025: (Start)
G.f.: 1/(1 - 49*x)^(6/7).
a(n) = (-49)^n * binomial(-6/7,n).
a(n) = 7^n/n! * Product_{k=0..n-1} (7*k+6). (End)
From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 49^n * Gamma(n+6/7) / (Gamma(6/7) * Gamma(n+1)).
a(n) ~ c * 49^n / n^(1/7), where c = 1/Gamma(6/7) = 1/A220607 = 0.904349... . (End)

A034385 Expansion of (1-16*x)^(-1/4), related to quartic factorial numbers.

Original entry on oeis.org

1, 4, 40, 480, 6240, 84864, 1188096, 16972800, 246105600, 3609548800, 53421322240, 796463349760, 11946950246400, 180123249868800, 2727580640870400, 41459225741230080, 632253192553758720
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A007696.
Expansion of (1-b^2*x)^(-1/b): A000984 (b=2), A004987 (b=3), this sequence (b=4), A034688 (b=5), A004993 (b=6), A034835 (b=7), A034977 (b=8), A035024 (b=9), A035308 (b=10).

Programs

  • Mathematica
    CoefficientList[Series[1/Surd[1-16x,4],{x,0,20}],x] (* Harvey P. Dale, Aug 06 2018 *)

Formula

a(n) = (4^n/n!)*A007696(n), n >= 1, a(0) := 1, A007696(n) = (4*n-3)!^4 := Product_{j = 1..n} 4*j - 3.
G.f.: (1 - 16*x)^(-1/4).
D-finite with recurrence: n*a(n) + 4*(-4*n + 3)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
From Peter Bala, Mar 31 2024: (Start)
a(n) = (-16)^n*binomial(-1/4, n).
a(n) ~ Gamma(3/4)/(sqrt(2)*Pi) * 16^n/n^(3/4).
E.g.f.: hypergeom([1/4], [1], 16*x).
a(n) = (16^n)*Sum_{k = 0..2*n} (-1)^k*binomial(-1/4, k)* binomial(-1/4, 2*n - k).
(16^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = (4^n)*binomial(2*n, n) = A098430.
Sum_{k = 0..2*n} a(k)*a(2*n-k) = (16^n)*binomial(4*n, 2*n). (End)

A386274 Expansion of 1/(1 - 49*x)^(5/7).

Original entry on oeis.org

1, 35, 1470, 65170, 2965235, 136993857, 6393046660, 300473193020, 14197358370195, 673585780452585, 32062683149543046, 1530264423046372650, 73197648235718158425, 3507856526988647130675, 168377113295455062272400, 8093326579068206659893360, 389491341617657445507367950
Offset: 0

Views

Author

Seiichi Manyama, Jul 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(Surd[1-49x,7])^5,{x,0,20}],x] (* Harvey P. Dale, Aug 01 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-49*x)^(5/7))

Formula

a(n) = (-49)^n * binomial(-5/7,n).
a(n) = 7^n/n! * Product_{k=0..n-1} (7*k+5).
a(n) = 7^n * Product_{k=1..n} (7 - 2/k).
D-finite with recurrence n*a(n) +7*(-7*n+2)*a(n-1)=0. - R. J. Mathar, Jul 30 2025

A224881 Expansion of 1/(1 - 16*x)^(1/8).

Original entry on oeis.org

1, 2, 18, 204, 2550, 33660, 460020, 6440280, 91773990, 1325624300, 19354114780, 285033326760, 4227994346940, 63094684869720, 946420273045800, 14259398780556720, 215673406555920390, 3273161111260438860, 49824785804742235980, 760483572809223601800
Offset: 0

Views

Author

Paul D. Hanna, Jul 23 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 18*x^2 + 204*x^3 + 2550*x^4 + 33660*x^5 + ...
where
A(x)^8 = 1 + 16*x + 256*x^2 + 4096*x^3 + 65536*x^4 + ... + 16^n*x^n + ...
Also,
A(x)^4 = 1 + 8*x + 96*x^2 + 1280*x^3 + 17920*x^4 + 258048*x^5 + ... + 4^n*A000984(n)*x^n + ...
A(x)^2 = 1 + 4*x + 40*x^2 + 480*x^3 + 6240*x^4 + 84864*x^5 + ... + 2^n*A004981(n)*x^n + ...
		

Crossrefs

(1-b*x)^(-1/A003557(b)): A000984 (b=4), A004981 (b=8), A004987 (b=9), A098658 (b=12), this sequence (b=16), A034688 (b=25), A298799 (b=27), A004993 (b=36), A034835 (b=49).
Cf. A301271.

Programs

  • GAP
    List([0..20],n->(2^n/Factorial(n))*Product([0..n-1],k->8*k+1)); # Muniru A Asiru, Jun 23 2018
  • Maple
    seq(coeff(series(1/(1-16*x)^(1/8), x,50),x,n+1),n=0..20); # Muniru A Asiru, Jun 23 2018
  • Mathematica
    CoefficientList[Series[1/(1-16*x)^(1/8), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 24 2013 *)
  • PARI
    {a(n)=polcoeff(1/(1-16*x +x*O(x^n))^(1/8),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=(2^n/n!)*prod(k=0,n-1,8*k + 1)}
    for(n=0,30,print1(a(n),", "))
    

Formula

a(n) = (2^n/n!) * Product_{k=0..n-1} (8*k + 1).
a(n) ~ 16^n/(GAMMA(1/8)*n^(7/8)). - Vaclav Kotesovec, Jul 24 2013

A298799 Expansion of (1-27*x)^(-1/9).

Original entry on oeis.org

1, 3, 45, 855, 17955, 398601, 9167823, 216098685, 5186368440, 126201632040, 3104560148184, 77049538223112, 1926238455577800, 48452305767226200, 1225151160114148200, 31118839466899364280, 793530406405933789140, 20305042752151835192700
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2018

Keywords

Comments

Conjecture: a(p*n) == a(n) (mod p^2) for prime p == 1 (mod 9) and all positive integers n except those n of the form n = m*p + k for 0 <= m <= (p-1)/9 and 1 <= k <= (p-1)/9. Cf. A034171, A004981 and A004982. - Peter Bala, Dec 23 2019

Crossrefs

(1-b*x)^(-1/A003557(b)): A000984 (b=4), A004981 (b=8), A004987 (b=9), A098658 (b=12), A224881 (b=16), A034688 (b=25), this sequence (b=27), A004993 (b=36), A034835 (b=49).

Programs

  • GAP
    List([0..20],n->(3^n/Factorial(n))*Product([0..n-1],k->9*k+1)); # Muniru A Asiru, Jun 23 2018
  • Maple
    seq(coeff(series((1-27*x)^(-1/9), x, n+1), x, n), n=0..20); # Muniru A Asiru, Jun 23 2018
    # Alternative:
    A298799 := n -> (-27)^n*binomial(-1/9, n):
    seq(A298799(n), n=0..17); # Peter Luschny, Dec 26 2019
  • PARI
    N=20; x='x+O('x^N); Vec((1-27*x)^(-1/9))
    

Formula

a(n) = 3^n/n! * Product_{k=0..n-1} (9*k + 1) for n > 0.
a(n) ~ 3^(3*n) / (Gamma(1/9) * n^(8/9)). - Vaclav Kotesovec, Jun 23 2018
From Peter Luschny, Dec 26 2019: (Start)
a(n) = (-27)^n*binomial(-1/9, n).
a(n) = n! * [x^n] hypergeom([1/9], [1], 27*x). (End)
D-finite with recurrence: n*a(n) +3*(-9*n+8)*a(n-1)=0. - R. J. Mathar, Jan 20 2020

A386271 Expansion of 1/(1 - 49*x)^(2/7).

Original entry on oeis.org

1, 14, 441, 16464, 662676, 27832392, 1201431588, 52862989872, 2359010923038, 106417603861492, 4842000975697886, 221851681068339504, 10223664969232645476, 473434331652157890504, 22014696421825341908436, 1027352499685182622393680, 48092938891512611510804145
Offset: 0

Views

Author

Seiichi Manyama, Jul 17 2025

Keywords

Crossrefs

Cf. A020918 (k=2, m=7), A020920 (k=2, m=9), A034835 (k=7, m=1), A034977 (k=8, m=1), A035024 (k=9, m=1), A216702 (k=4, m=3), A216703 (k=7, m=6), A354019 (k=6, m=1), this sequence (k=7, m=2), A386272 (k=7, m=3), A386273 (k=7, m=4), A386274 (k=7, m=5).

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-49*x)^(2/7))

Formula

a(n) = (-49)^n * binomial(-2/7,n).
a(n) = 7^n/n! * Product_{k=0..n-1} (7*k+2).
a(n) = 7^n * Product_{k=1..n} (7 - 5/k).
In general, 1/(1 - k^2*x)^(m/k) leads to the D-finite recurrence k*(k*n-k+m)*a(n-1) - n*a(n) = 0. This sequence is case k=7, m=2: (49*n-35)*a(n-1) - n*a(n) = 0. - Georg Fischer, Jul 19 2025

A386272 Expansion of 1/(1 - 49*x)^(3/7).

Original entry on oeis.org

1, 21, 735, 29155, 1224510, 53143734, 2356038874, 106021749330, 4823989594515, 221367522503855, 10227179539678101, 475098976797773601, 22171285583896101380, 1038639455430209672340, 48816054405219854599980, 2300863364299362480145724, 108715793963144877186885459
Offset: 0

Views

Author

Seiichi Manyama, Jul 17 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-49*x)^(3/7))

Formula

a(n) = (-49)^n * binomial(-3/7,n).
a(n) = 7^n/n! * Product_{k=0..n-1} (7*k+3).
a(n) = 7^n * Product_{k=1..n} (7 - 4/k).
D-finite with recurrence n*a(n) +7*(-7*n+4)*a(n-1)=0. - R. J. Mathar, Jul 20 2025

A386273 Expansion of 1/(1 - 49*x)^(4/7).

Original entry on oeis.org

1, 28, 1078, 45276, 1980825, 88740960, 4037713680, 185734829280, 8613452707860, 401961126366800, 18851976826602920, 887756726925482960, 41946505347229069860, 1987619022607162079520, 94411903573840198777200, 4494006610114793461794720, 214307940219849213209335710
Offset: 0

Views

Author

Seiichi Manyama, Jul 17 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-49*x)^(4/7))

Formula

a(n) = (-49)^n * binomial(-4/7,n).
a(n) = 7^n/n! * Product_{k=0..n-1} (7*k+4).
a(n) = 7^n * Product_{k=1..n} (7 - 3/k).
D-finite with recurrence n*a(n) +7*(-7*n+3)*a(n-1)=0. - R. J. Mathar, Jul 20 2025

A034904 Related to sept-factorial numbers A045754.

Original entry on oeis.org

1, 28, 980, 37730, 1531838, 64337196, 2766499428, 121034349975, 5365856182225, 240390356963680, 10861273400995360, 494187939745288880, 22618601857572837200, 1040455685448350511200, 48069052667713793617440, 2229202317465227179008780, 103723472536176158740937940
Offset: 1

Views

Author

Keywords

Comments

Convolution of A034835(n-1) with A025752(n), n >= 1.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(Power[1-49x, (-7)^-1]-1)/7,{x,0,30}],x] (* Harvey P. Dale, Aug 23 2011 *)

Formula

a(n) = 7^(n-1)*A045754(n)/n!, where A045754(n) = (7*n-6)(!^7) = Product_{j=1..n} (7*j-6).
G.f.: (-1+(1-49*x)^(-1/7))/7.
D-finite with recurrence: n*a(n) + 7*(-7*n+6)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
a(n) ~ 7^(2*n-1) * n^(-6/7) / Gamma(1/7). - Amiram Eldar, Aug 18 2025

A248329 Square array read by antidiagonals downwards: super Patalan numbers of order 7.

Original entry on oeis.org

1, 7, 42, 196, 147, 1911, 6860, 2744, 4459, 89180, 264110, 72030, 62426, 156065, 4213755, 10722866, 2218524, 1310946, 1747928, 5899257, 200574738, 450360372, 75060062, 33647614, 30588740, 55059732, 234003861, 9594158301, 19365495996, 2702162232, 975780806, 672952280, 825895980, 1872030888
Offset: 0

Views

Author

Tom Richardson, Oct 04 2014

Keywords

Comments

Generalization of super Catalan numbers, A068555, based on Patalan numbers of order 7, A025752.

Examples

			T(0..4,0..4) is
  1           7          196        6860       264110
  42          147        2744       72030      2218524
  1911        4459       62426      1310946    33647614
  89180       156065     1747928    30588740   672952280
  4213755     5899257    55059732   825895980  15898497615
		

Crossrefs

Cf. A068555, A025752, A034835 (first row), A216703 (first column), A248324, A248325, A248326, A248328, A248332.

Programs

  • PARI
    matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*49^(n+k)*binomial(n-1/7,n+k)) \\ Michel Marcus, Oct 09 2014

Formula

T(0,0)=1, T(n,k) = T(n-1,k)*(49*n-7)/(n+k), T(n,k) = T(n,k-1)*(49*k-42)/(n+k).
G.f.: (x/(1-49*x)^(6/7)+y/(1-49*y)^(1/7))/(x+y-49*x*y).
T(n,k) = (-1)^k*49^(n+k)*binomial(n-1/7,n+k).
Showing 1-10 of 10 results.