A216703
a(n) = Product_{k=1..n} (49 - 7/k).
Original entry on oeis.org
1, 42, 1911, 89180, 4213755, 200574738, 9594158301, 460519598448, 22162505675310, 1068725273676060, 51619430718553698, 2496503376570051576, 120872371815599997138, 5857661095679076784380, 284096563140435224042430, 13788153197749122873525936
Offset: 0
-
seq(product(49-7/k, k=1.. n), n=0..20);
seq((7^n/n!)*product(7*k+6, k=0.. n-1), n=0..20);
-
Table[49^n * Pochhammer[6/7, n] / n!, {n, 0, 15}] (* Amiram Eldar, Aug 17 2025 *)
A034385
Expansion of (1-16*x)^(-1/4), related to quartic factorial numbers.
Original entry on oeis.org
1, 4, 40, 480, 6240, 84864, 1188096, 16972800, 246105600, 3609548800, 53421322240, 796463349760, 11946950246400, 180123249868800, 2727580640870400, 41459225741230080, 632253192553758720
Offset: 0
-
CoefficientList[Series[1/Surd[1-16x,4],{x,0,20}],x] (* Harvey P. Dale, Aug 06 2018 *)
A386274
Expansion of 1/(1 - 49*x)^(5/7).
Original entry on oeis.org
1, 35, 1470, 65170, 2965235, 136993857, 6393046660, 300473193020, 14197358370195, 673585780452585, 32062683149543046, 1530264423046372650, 73197648235718158425, 3507856526988647130675, 168377113295455062272400, 8093326579068206659893360, 389491341617657445507367950
Offset: 0
-
CoefficientList[Series[1/(Surd[1-49x,7])^5,{x,0,20}],x] (* Harvey P. Dale, Aug 01 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(1/(1-49*x)^(5/7))
A224881
Expansion of 1/(1 - 16*x)^(1/8).
Original entry on oeis.org
1, 2, 18, 204, 2550, 33660, 460020, 6440280, 91773990, 1325624300, 19354114780, 285033326760, 4227994346940, 63094684869720, 946420273045800, 14259398780556720, 215673406555920390, 3273161111260438860, 49824785804742235980, 760483572809223601800
Offset: 0
G.f.: A(x) = 1 + 2*x + 18*x^2 + 204*x^3 + 2550*x^4 + 33660*x^5 + ...
where
A(x)^8 = 1 + 16*x + 256*x^2 + 4096*x^3 + 65536*x^4 + ... + 16^n*x^n + ...
Also,
A(x)^4 = 1 + 8*x + 96*x^2 + 1280*x^3 + 17920*x^4 + 258048*x^5 + ... + 4^n*A000984(n)*x^n + ...
A(x)^2 = 1 + 4*x + 40*x^2 + 480*x^3 + 6240*x^4 + 84864*x^5 + ... + 2^n*A004981(n)*x^n + ...
-
List([0..20],n->(2^n/Factorial(n))*Product([0..n-1],k->8*k+1)); # Muniru A Asiru, Jun 23 2018
-
seq(coeff(series(1/(1-16*x)^(1/8), x,50),x,n+1),n=0..20); # Muniru A Asiru, Jun 23 2018
-
CoefficientList[Series[1/(1-16*x)^(1/8), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 24 2013 *)
-
{a(n)=polcoeff(1/(1-16*x +x*O(x^n))^(1/8),n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=(2^n/n!)*prod(k=0,n-1,8*k + 1)}
for(n=0,30,print1(a(n),", "))
A298799
Expansion of (1-27*x)^(-1/9).
Original entry on oeis.org
1, 3, 45, 855, 17955, 398601, 9167823, 216098685, 5186368440, 126201632040, 3104560148184, 77049538223112, 1926238455577800, 48452305767226200, 1225151160114148200, 31118839466899364280, 793530406405933789140, 20305042752151835192700
Offset: 0
-
List([0..20],n->(3^n/Factorial(n))*Product([0..n-1],k->9*k+1)); # Muniru A Asiru, Jun 23 2018
-
seq(coeff(series((1-27*x)^(-1/9), x, n+1), x, n), n=0..20); # Muniru A Asiru, Jun 23 2018
# Alternative:
A298799 := n -> (-27)^n*binomial(-1/9, n):
seq(A298799(n), n=0..17); # Peter Luschny, Dec 26 2019
-
N=20; x='x+O('x^N); Vec((1-27*x)^(-1/9))
A386271
Expansion of 1/(1 - 49*x)^(2/7).
Original entry on oeis.org
1, 14, 441, 16464, 662676, 27832392, 1201431588, 52862989872, 2359010923038, 106417603861492, 4842000975697886, 221851681068339504, 10223664969232645476, 473434331652157890504, 22014696421825341908436, 1027352499685182622393680, 48092938891512611510804145
Offset: 0
Cf.
A020918 (k=2, m=7),
A020920 (k=2, m=9),
A034835 (k=7, m=1),
A034977 (k=8, m=1),
A035024 (k=9, m=1),
A216702 (k=4, m=3),
A216703 (k=7, m=6),
A354019 (k=6, m=1), this sequence (k=7, m=2),
A386272 (k=7, m=3),
A386273 (k=7, m=4),
A386274 (k=7, m=5).
A386272
Expansion of 1/(1 - 49*x)^(3/7).
Original entry on oeis.org
1, 21, 735, 29155, 1224510, 53143734, 2356038874, 106021749330, 4823989594515, 221367522503855, 10227179539678101, 475098976797773601, 22171285583896101380, 1038639455430209672340, 48816054405219854599980, 2300863364299362480145724, 108715793963144877186885459
Offset: 0
A386273
Expansion of 1/(1 - 49*x)^(4/7).
Original entry on oeis.org
1, 28, 1078, 45276, 1980825, 88740960, 4037713680, 185734829280, 8613452707860, 401961126366800, 18851976826602920, 887756726925482960, 41946505347229069860, 1987619022607162079520, 94411903573840198777200, 4494006610114793461794720, 214307940219849213209335710
Offset: 0
A034904
Related to sept-factorial numbers A045754.
Original entry on oeis.org
1, 28, 980, 37730, 1531838, 64337196, 2766499428, 121034349975, 5365856182225, 240390356963680, 10861273400995360, 494187939745288880, 22618601857572837200, 1040455685448350511200, 48069052667713793617440, 2229202317465227179008780, 103723472536176158740937940
Offset: 1
-
CoefficientList[Series[(Power[1-49x, (-7)^-1]-1)/7,{x,0,30}],x] (* Harvey P. Dale, Aug 23 2011 *)
A248329
Square array read by antidiagonals downwards: super Patalan numbers of order 7.
Original entry on oeis.org
1, 7, 42, 196, 147, 1911, 6860, 2744, 4459, 89180, 264110, 72030, 62426, 156065, 4213755, 10722866, 2218524, 1310946, 1747928, 5899257, 200574738, 450360372, 75060062, 33647614, 30588740, 55059732, 234003861, 9594158301, 19365495996, 2702162232, 975780806, 672952280, 825895980, 1872030888
Offset: 0
T(0..4,0..4) is
1 7 196 6860 264110
42 147 2744 72030 2218524
1911 4459 62426 1310946 33647614
89180 156065 1747928 30588740 672952280
4213755 5899257 55059732 825895980 15898497615
-
matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*49^(n+k)*binomial(n-1/7,n+k)) \\ Michel Marcus, Oct 09 2014
Showing 1-10 of 10 results.
Comments