A216704
a(n) = Product_{k=1..n} (64 - 8/k).
Original entry on oeis.org
1, 56, 3360, 206080, 12776960, 797282304, 49963024384, 3140532961280, 197853576560640, 12486759054049280, 789163172215914496, 49932506169297862656, 3162392057388864634880, 200447004252955727626240, 12714067126901763295150080, 806919460320698577132191744
Offset: 0
-
seq(product(64-8/k, k=1.. n), n=0..20);
seq((8^n/n!)*product(8*k+7, k=0.. n-1), n=0..20);
-
Table[Product[64-8/k,{k,n}],{n,0,20}] (* Harvey P. Dale, Sep 23 2017 *)
A216705
a(n) = Product_{k=1..n} (81 - 9/k).
Original entry on oeis.org
1, 72, 5508, 429624, 33832890, 2679564888, 213025408596, 16981168285224, 1356370816782267, 108509665342581360, 8691624193940766936, 696910230823250585232, 55927046023565859464868, 4491372003738673637024784, 360913821729000560118063000
Offset: 0
-
seq(product(81-9/k, k=1.. n), n=0..20);
seq((9^n/n!)*product(9*k+8, k=0.. n-1), n=0..20);
-
Table[Product[81-9/k,{k,n}],{n,0,20}] (* Harvey P. Dale, Jul 20 2021 *)
A386274
Expansion of 1/(1 - 49*x)^(5/7).
Original entry on oeis.org
1, 35, 1470, 65170, 2965235, 136993857, 6393046660, 300473193020, 14197358370195, 673585780452585, 32062683149543046, 1530264423046372650, 73197648235718158425, 3507856526988647130675, 168377113295455062272400, 8093326579068206659893360, 389491341617657445507367950
Offset: 0
-
CoefficientList[Series[1/(Surd[1-49x,7])^5,{x,0,20}],x] (* Harvey P. Dale, Aug 01 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(1/(1-49*x)^(5/7))
A386271
Expansion of 1/(1 - 49*x)^(2/7).
Original entry on oeis.org
1, 14, 441, 16464, 662676, 27832392, 1201431588, 52862989872, 2359010923038, 106417603861492, 4842000975697886, 221851681068339504, 10223664969232645476, 473434331652157890504, 22014696421825341908436, 1027352499685182622393680, 48092938891512611510804145
Offset: 0
Cf.
A020918 (k=2, m=7),
A020920 (k=2, m=9),
A034835 (k=7, m=1),
A034977 (k=8, m=1),
A035024 (k=9, m=1),
A216702 (k=4, m=3),
A216703 (k=7, m=6),
A354019 (k=6, m=1), this sequence (k=7, m=2),
A386272 (k=7, m=3),
A386273 (k=7, m=4),
A386274 (k=7, m=5).
A386272
Expansion of 1/(1 - 49*x)^(3/7).
Original entry on oeis.org
1, 21, 735, 29155, 1224510, 53143734, 2356038874, 106021749330, 4823989594515, 221367522503855, 10227179539678101, 475098976797773601, 22171285583896101380, 1038639455430209672340, 48816054405219854599980, 2300863364299362480145724, 108715793963144877186885459
Offset: 0
A386273
Expansion of 1/(1 - 49*x)^(4/7).
Original entry on oeis.org
1, 28, 1078, 45276, 1980825, 88740960, 4037713680, 185734829280, 8613452707860, 401961126366800, 18851976826602920, 887756726925482960, 41946505347229069860, 1987619022607162079520, 94411903573840198777200, 4494006610114793461794720, 214307940219849213209335710
Offset: 0
A216706
a(n) = Product_{k=1..n} (100 - 10/k).
Original entry on oeis.org
1, 90, 8550, 826500, 80583750, 7897207500, 776558737500, 76546504125000, 7558967282343750, 747497875698437500, 74002289694145312500, 7332954160601671875000, 727184620926332460937500, 72159089307305298046875000, 7164366724082454591796875000
Offset: 0
-
seq(product(100-10/k, k=1.. n), n=0..20);
seq((10^n/n!)*product(10*k+9, k=0.. n-1), n=0..20);
A216786
a(n) = Product_{k=1..n} (121 - 11/k).
Original entry on oeis.org
1, 110, 12705, 1490720, 176277640, 20941783632, 2495562549480, 298041470195040, 35653210872081660, 4270462368900447720, 512028438031163681628, 61443412563739641795360, 7378329792029068652259480, 886534702703800402679177520, 106574136046464005550646840440
Offset: 0
-
seq(product(121-11/k, k=1.. n), n=0..20);
seq((11^n/n!)*product(11*k+10, k=0.. n-1), n=0..20);
A216786 := proc(n)
binomial(-10/11,n)*(-121)^n ;
end proc: # R. J. Mathar, Sep 17 2012
-
Join[{1},FoldList[Times,121-11/Range[20]]] (* Harvey P. Dale, Mar 15 2016 *)
A248329
Square array read by antidiagonals downwards: super Patalan numbers of order 7.
Original entry on oeis.org
1, 7, 42, 196, 147, 1911, 6860, 2744, 4459, 89180, 264110, 72030, 62426, 156065, 4213755, 10722866, 2218524, 1310946, 1747928, 5899257, 200574738, 450360372, 75060062, 33647614, 30588740, 55059732, 234003861, 9594158301, 19365495996, 2702162232, 975780806, 672952280, 825895980, 1872030888
Offset: 0
T(0..4,0..4) is
1 7 196 6860 264110
42 147 2744 72030 2218524
1911 4459 62426 1310946 33647614
89180 156065 1747928 30588740 672952280
4213755 5899257 55059732 825895980 15898497615
-
matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*49^(n+k)*binomial(n-1/7,n+k)) \\ Michel Marcus, Oct 09 2014
A216787
a(n) = Product_{k=1..n} (144 - 12/k).
Original entry on oeis.org
1, 132, 18216, 2550240, 359583840, 50917071744, 7230224187648, 1028757612985344, 146597959850411520, 20914642271992043520, 2986610916440463814656, 426813850967673556058112, 61034380688377318516310016, 8732611390798600956948971520, 1250010944797171165551838494720
Offset: 0
-
seq(product(144-12/k, k=1.. n), n=0..20);
seq((12^n/n!)*product(12*k+11, k=0.. n-1), n=0..20);
-
Join[{1},FoldList[Times,144-12/Range[20]]] (* Harvey P. Dale, Dec 22 2015 *)
Showing 1-10 of 11 results.
Comments