cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A216704 a(n) = Product_{k=1..n} (64 - 8/k).

Original entry on oeis.org

1, 56, 3360, 206080, 12776960, 797282304, 49963024384, 3140532961280, 197853576560640, 12486759054049280, 789163172215914496, 49932506169297862656, 3162392057388864634880, 200447004252955727626240, 12714067126901763295150080, 806919460320698577132191744
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(64-8/k, k=1.. n), n=0..20);
    seq((8^n/n!)*product(8*k+7, k=0.. n-1), n=0..20);
  • Mathematica
    Table[Product[64-8/k,{k,n}],{n,0,20}] (* Harvey P. Dale, Sep 23 2017 *)

Formula

From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 64^n * Gamma(n+7/8) / (Gamma(7/8) * Gamma(n+1)).
a(n) ~ c * 64^n / n^(1/8), where c = 1/Gamma(7/8) = 1/A203146 = 0.917723... . (End)

A216705 a(n) = Product_{k=1..n} (81 - 9/k).

Original entry on oeis.org

1, 72, 5508, 429624, 33832890, 2679564888, 213025408596, 16981168285224, 1356370816782267, 108509665342581360, 8691624193940766936, 696910230823250585232, 55927046023565859464868, 4491372003738673637024784, 360913821729000560118063000
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(81-9/k, k=1.. n), n=0..20);
    seq((9^n/n!)*product(9*k+8, k=0.. n-1), n=0..20);
  • Mathematica
    Table[Product[81-9/k,{k,n}],{n,0,20}] (* Harvey P. Dale, Jul 20 2021 *)

Formula

From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 81^n * Gamma(n+8/9) / (Gamma(8/9) * Gamma(n+1)).
a(n) ~ c * 81^n / n^(1/9), where c = 1/Gamma(8/9) = 0.927851... . (End)

A386274 Expansion of 1/(1 - 49*x)^(5/7).

Original entry on oeis.org

1, 35, 1470, 65170, 2965235, 136993857, 6393046660, 300473193020, 14197358370195, 673585780452585, 32062683149543046, 1530264423046372650, 73197648235718158425, 3507856526988647130675, 168377113295455062272400, 8093326579068206659893360, 389491341617657445507367950
Offset: 0

Views

Author

Seiichi Manyama, Jul 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(Surd[1-49x,7])^5,{x,0,20}],x] (* Harvey P. Dale, Aug 01 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-49*x)^(5/7))

Formula

a(n) = (-49)^n * binomial(-5/7,n).
a(n) = 7^n/n! * Product_{k=0..n-1} (7*k+5).
a(n) = 7^n * Product_{k=1..n} (7 - 2/k).
D-finite with recurrence n*a(n) +7*(-7*n+2)*a(n-1)=0. - R. J. Mathar, Jul 30 2025

A386271 Expansion of 1/(1 - 49*x)^(2/7).

Original entry on oeis.org

1, 14, 441, 16464, 662676, 27832392, 1201431588, 52862989872, 2359010923038, 106417603861492, 4842000975697886, 221851681068339504, 10223664969232645476, 473434331652157890504, 22014696421825341908436, 1027352499685182622393680, 48092938891512611510804145
Offset: 0

Views

Author

Seiichi Manyama, Jul 17 2025

Keywords

Crossrefs

Cf. A020918 (k=2, m=7), A020920 (k=2, m=9), A034835 (k=7, m=1), A034977 (k=8, m=1), A035024 (k=9, m=1), A216702 (k=4, m=3), A216703 (k=7, m=6), A354019 (k=6, m=1), this sequence (k=7, m=2), A386272 (k=7, m=3), A386273 (k=7, m=4), A386274 (k=7, m=5).

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-49*x)^(2/7))

Formula

a(n) = (-49)^n * binomial(-2/7,n).
a(n) = 7^n/n! * Product_{k=0..n-1} (7*k+2).
a(n) = 7^n * Product_{k=1..n} (7 - 5/k).
In general, 1/(1 - k^2*x)^(m/k) leads to the D-finite recurrence k*(k*n-k+m)*a(n-1) - n*a(n) = 0. This sequence is case k=7, m=2: (49*n-35)*a(n-1) - n*a(n) = 0. - Georg Fischer, Jul 19 2025

A386272 Expansion of 1/(1 - 49*x)^(3/7).

Original entry on oeis.org

1, 21, 735, 29155, 1224510, 53143734, 2356038874, 106021749330, 4823989594515, 221367522503855, 10227179539678101, 475098976797773601, 22171285583896101380, 1038639455430209672340, 48816054405219854599980, 2300863364299362480145724, 108715793963144877186885459
Offset: 0

Views

Author

Seiichi Manyama, Jul 17 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-49*x)^(3/7))

Formula

a(n) = (-49)^n * binomial(-3/7,n).
a(n) = 7^n/n! * Product_{k=0..n-1} (7*k+3).
a(n) = 7^n * Product_{k=1..n} (7 - 4/k).
D-finite with recurrence n*a(n) +7*(-7*n+4)*a(n-1)=0. - R. J. Mathar, Jul 20 2025

A386273 Expansion of 1/(1 - 49*x)^(4/7).

Original entry on oeis.org

1, 28, 1078, 45276, 1980825, 88740960, 4037713680, 185734829280, 8613452707860, 401961126366800, 18851976826602920, 887756726925482960, 41946505347229069860, 1987619022607162079520, 94411903573840198777200, 4494006610114793461794720, 214307940219849213209335710
Offset: 0

Views

Author

Seiichi Manyama, Jul 17 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-49*x)^(4/7))

Formula

a(n) = (-49)^n * binomial(-4/7,n).
a(n) = 7^n/n! * Product_{k=0..n-1} (7*k+4).
a(n) = 7^n * Product_{k=1..n} (7 - 3/k).
D-finite with recurrence n*a(n) +7*(-7*n+3)*a(n-1)=0. - R. J. Mathar, Jul 20 2025

A216706 a(n) = Product_{k=1..n} (100 - 10/k).

Original entry on oeis.org

1, 90, 8550, 826500, 80583750, 7897207500, 776558737500, 76546504125000, 7558967282343750, 747497875698437500, 74002289694145312500, 7332954160601671875000, 727184620926332460937500, 72159089307305298046875000, 7164366724082454591796875000
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(100-10/k, k=1.. n), n=0..20);
    seq((10^n/n!)*product(10*k+9, k=0.. n-1), n=0..20);

Formula

From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 100^n * Gamma(n+9/10) / (Gamma(9/10) * Gamma(n+1)).
a(n) ~ c * 100^n / n^(1/10), where c = 1/Gamma(9/10) = 1/A340725 = 0.935778... . (End)

A216786 a(n) = Product_{k=1..n} (121 - 11/k).

Original entry on oeis.org

1, 110, 12705, 1490720, 176277640, 20941783632, 2495562549480, 298041470195040, 35653210872081660, 4270462368900447720, 512028438031163681628, 61443412563739641795360, 7378329792029068652259480, 886534702703800402679177520, 106574136046464005550646840440
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(121-11/k, k=1.. n), n=0..20);
    seq((11^n/n!)*product(11*k+10, k=0.. n-1), n=0..20);
    A216786 := proc(n)
        binomial(-10/11,n)*(-121)^n ;
    end proc: # R. J. Mathar, Sep 17 2012
  • Mathematica
    Join[{1},FoldList[Times,121-11/Range[20]]] (* Harvey P. Dale, Mar 15 2016 *)

Formula

From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 121^n * Gamma(n+10/11) / (Gamma(10/11) * Gamma(n+1)).
a(n) ~ c * 121^n / n^(1/11), where c = 1/Gamma(10/11) = 0.942148... . (End)

A248329 Square array read by antidiagonals downwards: super Patalan numbers of order 7.

Original entry on oeis.org

1, 7, 42, 196, 147, 1911, 6860, 2744, 4459, 89180, 264110, 72030, 62426, 156065, 4213755, 10722866, 2218524, 1310946, 1747928, 5899257, 200574738, 450360372, 75060062, 33647614, 30588740, 55059732, 234003861, 9594158301, 19365495996, 2702162232, 975780806, 672952280, 825895980, 1872030888
Offset: 0

Views

Author

Tom Richardson, Oct 04 2014

Keywords

Comments

Generalization of super Catalan numbers, A068555, based on Patalan numbers of order 7, A025752.

Examples

			T(0..4,0..4) is
  1           7          196        6860       264110
  42          147        2744       72030      2218524
  1911        4459       62426      1310946    33647614
  89180       156065     1747928    30588740   672952280
  4213755     5899257    55059732   825895980  15898497615
		

Crossrefs

Cf. A068555, A025752, A034835 (first row), A216703 (first column), A248324, A248325, A248326, A248328, A248332.

Programs

  • PARI
    matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*49^(n+k)*binomial(n-1/7,n+k)) \\ Michel Marcus, Oct 09 2014

Formula

T(0,0)=1, T(n,k) = T(n-1,k)*(49*n-7)/(n+k), T(n,k) = T(n,k-1)*(49*k-42)/(n+k).
G.f.: (x/(1-49*x)^(6/7)+y/(1-49*y)^(1/7))/(x+y-49*x*y).
T(n,k) = (-1)^k*49^(n+k)*binomial(n-1/7,n+k).

A216787 a(n) = Product_{k=1..n} (144 - 12/k).

Original entry on oeis.org

1, 132, 18216, 2550240, 359583840, 50917071744, 7230224187648, 1028757612985344, 146597959850411520, 20914642271992043520, 2986610916440463814656, 426813850967673556058112, 61034380688377318516310016, 8732611390798600956948971520, 1250010944797171165551838494720
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(144-12/k, k=1.. n), n=0..20);
    seq((12^n/n!)*product(12*k+11, k=0.. n-1), n=0..20);
  • Mathematica
    Join[{1},FoldList[Times,144-12/Range[20]]] (* Harvey P. Dale, Dec 22 2015 *)

Formula

From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 144^n * Gamma(n+11/12) / (Gamma(11/12) * Gamma(n+1)).
a(n) ~ c * 144^n / n^(1/12), where c = 1/Gamma(11/12) = 0.947376... . (End)
Showing 1-10 of 11 results. Next