A216786 a(n) = Product_{k=1..n} (121 - 11/k).
1, 110, 12705, 1490720, 176277640, 20941783632, 2495562549480, 298041470195040, 35653210872081660, 4270462368900447720, 512028438031163681628, 61443412563739641795360, 7378329792029068652259480, 886534702703800402679177520, 106574136046464005550646840440
Offset: 0
Keywords
Programs
-
Maple
seq(product(121-11/k, k=1.. n), n=0..20); seq((11^n/n!)*product(11*k+10, k=0.. n-1), n=0..20); A216786 := proc(n) binomial(-10/11,n)*(-121)^n ; end proc: # R. J. Mathar, Sep 17 2012
-
Mathematica
Join[{1},FoldList[Times,121-11/Range[20]]] (* Harvey P. Dale, Mar 15 2016 *)
Formula
From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 121^n * Gamma(n+10/11) / (Gamma(10/11) * Gamma(n+1)).
a(n) ~ c * 121^n / n^(1/11), where c = 1/Gamma(10/11) = 0.942148... . (End)
Comments