A216705
a(n) = Product_{k=1..n} (81 - 9/k).
Original entry on oeis.org
1, 72, 5508, 429624, 33832890, 2679564888, 213025408596, 16981168285224, 1356370816782267, 108509665342581360, 8691624193940766936, 696910230823250585232, 55927046023565859464868, 4491372003738673637024784, 360913821729000560118063000
Offset: 0
-
seq(product(81-9/k, k=1.. n), n=0..20);
seq((9^n/n!)*product(9*k+8, k=0.. n-1), n=0..20);
-
Table[Product[81-9/k,{k,n}],{n,0,20}] (* Harvey P. Dale, Jul 20 2021 *)
A216706
a(n) = Product_{k=1..n} (100 - 10/k).
Original entry on oeis.org
1, 90, 8550, 826500, 80583750, 7897207500, 776558737500, 76546504125000, 7558967282343750, 747497875698437500, 74002289694145312500, 7332954160601671875000, 727184620926332460937500, 72159089307305298046875000, 7164366724082454591796875000
Offset: 0
-
seq(product(100-10/k, k=1.. n), n=0..20);
seq((10^n/n!)*product(10*k+9, k=0.. n-1), n=0..20);
A216786
a(n) = Product_{k=1..n} (121 - 11/k).
Original entry on oeis.org
1, 110, 12705, 1490720, 176277640, 20941783632, 2495562549480, 298041470195040, 35653210872081660, 4270462368900447720, 512028438031163681628, 61443412563739641795360, 7378329792029068652259480, 886534702703800402679177520, 106574136046464005550646840440
Offset: 0
-
seq(product(121-11/k, k=1.. n), n=0..20);
seq((11^n/n!)*product(11*k+10, k=0.. n-1), n=0..20);
A216786 := proc(n)
binomial(-10/11,n)*(-121)^n ;
end proc: # R. J. Mathar, Sep 17 2012
-
Join[{1},FoldList[Times,121-11/Range[20]]] (* Harvey P. Dale, Mar 15 2016 *)
A248332
Square array read by antidiagonals downwards: super Patalan numbers of order 8.
Original entry on oeis.org
1, 8, 56, 288, 224, 3360, 13056, 5376, 8960, 206080, 652800, 182784, 161280, 412160, 12776960, 34467840, 7311360, 4386816, 5935104, 20443136, 797282304, 1884241920, 321699840, 146227200, 134529024, 245317632, 1063043072, 49963024384, 105517547520, 15073935360, 5514854400, 3843686400
Offset: 0
T(0..4,0..4) is
1 8 288 13056 652800
56 224 5376 182784 7311360
3360 8960 161280 4386816 146227200
206080 412160 5935104 134529024 3843686400
12776960 20443136 245317632 4766171136 119154278400
-
matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*64^(n+k)*binomial(n-1/8,n+k)) \\ Michel Marcus, Oct 09 2014
A216787
a(n) = Product_{k=1..n} (144 - 12/k).
Original entry on oeis.org
1, 132, 18216, 2550240, 359583840, 50917071744, 7230224187648, 1028757612985344, 146597959850411520, 20914642271992043520, 2986610916440463814656, 426813850967673556058112, 61034380688377318516310016, 8732611390798600956948971520, 1250010944797171165551838494720
Offset: 0
-
seq(product(144-12/k, k=1.. n), n=0..20);
seq((12^n/n!)*product(12*k+11, k=0.. n-1), n=0..20);
-
Join[{1},FoldList[Times,144-12/Range[20]]] (* Harvey P. Dale, Dec 22 2015 *)
A216788
a(n) = Product_{k=1..n} (169 - 13/k).
Original entry on oeis.org
1, 156, 25350, 4174300, 691890225, 115130533440, 19207610662240, 3210414924974400, 537343198067590200, 90034838076214002400, 15098842345381088202480, 2533860269961226256525280, 425477370330989242241536600, 71480198215606192696578148800
Offset: 0
-
seq(product(169-13/k, k=1.. n), n=0..20);
seq((13^n/n!)*product(13*k+12, k=0.. n-1), n=0..20);
-
Table[Product[169-13/k,{k,n}],{n,0,20}] (* Harvey P. Dale, Mar 13 2013 *)
Showing 1-6 of 6 results.
Comments