cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Tom Richardson

Tom Richardson's wiki page.

Tom Richardson has authored 13 sequences. Here are the ten most recent ones:

A296056 Determinant of the inverse of the matrix A_n, where A_n is the n X n matrix defined by A_n[i,j] = 1/C(i+j-2) for 1 <= i,j <= n, and C(k) is the k-th Catalan number (A000108).

Original entry on oeis.org

1, -2, -1400, -679140000, -122489812645200000, -6931927717187904217987200000, -114287375178291587421201860354580633600000, -527655997339226839875614785993553970321322576128000000000, -666218073328701414704702576237379472614149140939534461737723520000000000000
Offset: 1

Author

Tom Richardson, Dec 03 2017

Keywords

Comments

It is conjectured that a(n) is an integer for all n.
The contributor suggests the name "Catbert matrix" for the matrix A_n, based on its similarity to the Hilbert matrix and its relation to the Catalan numbers.

Crossrefs

Programs

  • Mathematica
    a[n_] := 1/Det@ Table[ 1/CatalanNumber[i + j -2], {i, n}, {j, n}]; Array[a, 9] (* Robert G. Wilson v, Jan 05 2018 *)
    Table[Product[4^(2*k + 1) * (4*k - 1)/6 * Binomial[2*k - 3/2, k] * Binomial[2*k - 3/2, k + 1], {k, 0, n - 1}], {n, 1, 10}] (* Vaclav Kotesovec, May 19 2020 *)
  • PARI
    a(n) = 1/matdet(matrix(n,n,i,j,(i+j-1)/binomial(2*i+2*j-4,i+j-2)))

Formula

a(n) ~ -c * 16^(n*(n-1)) / (3^n * Pi^n * n^(27/8)), where c = 3*A^(3/2) / (2^(7/6) * exp(1/8) * sqrt(Pi)) = 0.9662886794923866798595701447717791386557874..., where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 19 2020

A283151 Triangle read by rows: Riordan array (1/(1-9x)^(2/3), x/(9x-1)).

Original entry on oeis.org

1, 6, -1, 45, -15, 1, 360, -180, 24, -1, 2970, -1980, 396, -33, 1, 24948, -20790, 5544, -693, 42, -1, 212058, -212058, 70686, -11781, 1071, -51, 1, 1817640, -2120580, 848232, -176715, 21420, -1530, 60, -1, 15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1, 135868590, -203802885
Offset: 0

Author

Tom Richardson, Mar 01 2017

Keywords

Comments

This is an example of a Riordan group involution.
Dual Riordan array of A283150.
With A283150 and A248324, forms doubly infinite Riordan array. For b and c the sequences A283150 and A248324, respectively, and i,j >= 0, the doubly infinite array with d(i,j) = a(i,j), d(-j,-i) = b(i,j), d(i,-j) = c(i,j), and d(-i,j) = 0 (except d(0,0)=1) is a doubly infinite Riordan array.

Examples

			Triangle begins
         1;
         6,        -1;
        45,       -15,       1;
       360,      -180,      24,       -1;
      2970,     -1980,     396,      -33,      1;
     24948,    -20790,    5544,     -693,     42,     -1;
    212058,   -212058,   70686,   -11781,   1071,    -51,    1;
   1817640,  -2120580,  848232,  -176715,  21420,  -1530,   60,  -1;
  15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1;
		

Crossrefs

Formula

a(m,n) = binomial(-n-2/3, m-n)*(-1)^m*9^(m-n).
G.f.: (1-9x)^(1/3)/(xy-9x+1).
Recurrence: a(m,n) = a(m,n-1)*(n-1-m)/(9*n-3) for 0 < n <= m; matrix inverse of a(m,n) is a(m,n). - Werner Schulte, Aug 05 2017
From Peter Bala, Mar 05 2018 (Start):
Let P(n,x) = Sum_{k = 0..n} T(n,k)*x^(n-k) denote the n-th row polynomial in descending powers of x. Then (-1)^n*P(n,x) is the n-th degree Taylor polynomial of (1 - 9*x)^(n-1/3) about 0. For example, for n = 4 we have (1 - 9*x)^(11/3) = 2970*x^4 - 1980*x^3 + 396*x^2 - 33*x + 1 + O(x^5).
Let R(n,x) denote the n-th row polynomial of this triangle. The polynomial R(n,9*x) has the e.g.f. Sum_{k = 0..n} T(n,k)*(9*x)^k/k!. The e.g.f. for the n-th diagonal of the triangle (starting at n = 0 for the main diagonal) equals exp(-x) * the e.g.f. for the polynomial R(n,9*x). For example, when n = 3 we have exp(-x)*(360 - 180*(9*x) + 24*(9*x)^2/2! - (9*x)^3/3!) = 360 - 1980*x + 5544*x^2/2! - 11781*x^3/3! + 21420*x^4/4! - ....
Let F(x) = (1 - ( 1 - 9*x)^(1/3))/(3*x). See A025748. The derivatives of F(x) are related to the row polynomials P(n,x) by the identity x^n/n! * (d/dx)^n(F(x)) = 1/(3*x)*( (-1)^n - P(n,x)/(1 - 9*x)^(n-1/3) ), n = 0,1,2,.... Cf. A283151 and A046521. (End)
From Peter Bala, Aug 18 2021: (Start)
T(n,k) = (-1)^k*binomial(n-1/3, n-k)*9^(n-k).
Analogous to the binomial transform we have the following sequence transformation formula: g(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*f(k) iff f(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*g(k). See Prodinger, bottom of p. 413, with b replaced with 9*b, c = -1 and d = 2/3.
Equivalently, if F(x) = Sum_{n >= 0} f(n)*x^n and G(x) = Sum_{n >= 0} g(n)*x^n are a pair of formal power series then
G(x) = (1/(1 - 9*b*x)^(2/3)) * F(x/(1 - 9*b*x)) iff F(x) = (1/(1 + 9*b*x)^(2/3)) * G(x/(1 + 9*b*x)).
The infinitesimal generator of the unsigned array has the sequence (9*n+6) n>=0 on the main subdiagonal and zeros elsewhere. The m-th power of the unsigned array has entries m^(n-k)*|T(n,k)|. (End)

Extensions

Offset corrected by Werner Schulte, Aug 05 2017

A283150 Riordan array (1/(1-9x)^(1/3), x/(9x-1)).

Original entry on oeis.org

1, 3, -1, 18, -12, 1, 126, -126, 21, -1, 945, -1260, 315, -30, 1, 7371, -12285, 4095, -585, 39, -1, 58968, -117936, 49140, -9360, 936, -48, 1, 480168, -1120392, 560196, -133380, 17784, -1368, 57, -1, 3961386, -10563696, 6162156, -1760616, 293436, -30096, 1881, -66, 1, 33011550, -99034650, 66023100
Offset: 0

Author

Tom Richardson, Mar 01 2017

Keywords

Comments

Triangle read by rows. This is an example of a Riordan group involution. Dual Riordan array of A283151. With A283151 and A248324, forms doubly infinite Riordan array. For b and c the sequences A283151 and A248324, respectively, and i,j >= 0, the doubly infinite array with d(i,j) = a(i,j), d(-j,-i) = b(i,j), d(i,-j) = c(j,i), and d(-i,j) = 0 (except d(0,0)=1) is a doubly infinite Riordan array.
Matrix inverse of a(m,n) is a(m,n). - Werner Schulte, Aug 05 2017

Examples

			The triangle begins
        1;
        3,        -1;
       18,       -12,       1;
      126,      -126,      21,       -1;
      945,     -1260,     315,      -30,      1;
     7371,    -12285,    4095,     -585,     39,     -1;
    58968,   -117936,   49140,    -9360,    936,    -48,    1;
   480168,  -1120392,  560196,  -133380,  17784,  -1368,   57,  -1;
  3961386, -10563696, 6162156, -1760616, 293436, -30096, 1881, -66, 1;
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> (-1)^k*binomial(n - 2/3, n - k)*9^(n - k):
    for n from 0 to 6 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Sep 03 2021
  • PARI
    a(m,n) = binomial(-n-1/3, m-n)*(-1)^m*9^(m-n);
    tabl(nn) = for(n=0, nn, for (k=0, n, print1(a(n, k), ", ")); print); \\ Michel Marcus, Aug 07 2017

Formula

a(m,n) = binomial(-n-1/3, m-n)*(-1)^m*9^(m-n).
G.f.: (1-9x)^(2/3)/(xy-9x+1).
Recurrence: a(m,n) = a(m, n-1)*(n-1-m)/(9*n-6) for 0 < n <= m. - Werner Schulte, Aug 05 2017
From Peter Bala, Mar 05 2018 (Start):
Let P(n,x) = Sum_{k = 0..n} T(n,k)*x^(n-k) denote the n-th row polynomial in descending powers of x. Then (-1)^n*P(n,x) is the n-th degree Taylor polynomial of (1 - 9*x)^(n-2/3) about 0. For example, for n = 4 we have (1 - 9*x)^(10/3) = 945*x^4 - 1260*x^3 + 315*x^2 - 30*x + 1 + O(x^5).
Let R(n,x) denote the n-th row polynomial of this triangle. The polynomial R(n,9*x) has the e.g.f. Sum_{k = 0..n} T(n,k)*(9*x)^k/k!. The e.g.f. for the n-th diagonal of the triangle (starting at n = 0 for the main diagonal) equals exp(-x) * the e.g.f. for the polynomial R(n,9*x). For example, when n = 3 we have exp(-x)*(126 - 126*(9*x) + 21*(9*x)^2/2! - (9*x)^3/3!) = 126 - 1260*x + 4095*x^2/2! - 9360*x^3/3! + 17784*x^4/4! - ....
Let F(x) = (1 - ( 1 - 9*x)^(2/3))/(3*x) denote the o.g.f. of A155579. The derivatives of F(x) are related to the row polynomials P(n,x) by the identity x^n/n! * (d/dx)^n(F(x)) = 1/(3*x)*( (-1)^n - P(n,x)/(1 - 9*x)^(n-2/3) ), n = 0,1,2,.... Cf. A283151 and A046521. (End)
From Peter Bala, Aug 18 2021: (Start)
T(n,k) = (-1)^k*binomial(n-2/3, n-k)*9^(n-k).
Analogous to the binomial transform we have the following sequence transformation formula: g(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*f(k) iff f(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*g(k). See Prodinger, bottom of p. 413, with b replaced with 9*b, c = -1 and d = 1/3.
Equivalently, if F(x) = Sum_{n >= 0} f(n)*x^n and G(x) = Sum_{n >= 0} g(n)*x^n are a pair of formal power series then
G(x) = (1/(1 - 9*b*x)^(1/3)) * F(x/(1 - 9*b*x)) iff F(x) = (1/(1 + 9*b*x)^(1/3)) * G(x/(1 + 9*b*x)).
The infinitesimal generator of the unsigned array has the sequence (9*n+3) n>=0 on the main subdiagonal and zeros elsewhere. The m-th power of the unsigned array has entries m^(n-k)*|T(n,k)|. (End)

Extensions

Offset corrected by Werner Schulte, Aug 05 2017

A276316 G.f. A(x) satisfies: x = A(x)-4*A(x)^2+A(x)^3.

Original entry on oeis.org

1, 4, 31, 300, 3251, 37744, 459060, 5773548, 74474455, 979872036, 13099102575, 177414673488, 2429310288468, 33574008073120, 467717206216760, 6560977611629676, 92595131510426943, 1313820730347196300, 18730821529411507725, 268185082351558093260
Offset: 1

Author

Tom Richardson, Aug 29 2016

Keywords

Examples

			G.f.: A(x) = x+4*x^2+31*x^3+300*x^4+3251*x^5+37744*x^6+459060*x^7+...
Related Expansions:
A(x)^2 = x^2+8*x^3+78*x^4+848*x^5+9863*x^6+120096*x^7+1511634*x^8+...
A(x)^3 = x^3+12*x^4+141*x^5+1708*x^6+21324*x^7+272988*x^8+3566761*x^9+...
		

Crossrefs

Programs

  • Maple
    S:= series(RootOf(x-4*x^2+x^3-t,x),t,100):
    seq(coeff(S,t,j),j=1..100); # Robert Israel, Sep 02 2016
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - 4*x^2 + x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
  • PARI
    {a(n)=polcoeff(serreverse(x - 4*x^2 + x^3 + x^2*O(x^n)), n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f.: Series_Reversion(x-4*x^2+x^3).
From Robert Israel, Sep 02 2016: (Start)
G.f. g(x) satisfies the differential equation
(12-184*t-27*t^2)*g''(t) - (92+27*t)*g'(t) + 3*g(t) = 4.
(-27*n^2+3)*a(n)+(-184*n^2-276*n-92)*a(n+1)+(12*n^2+36*n+24)*a(n+2) = 0
for n >= 1. (End)
a(n) ~ (46 + 13*sqrt(13))^(n - 1/2) / (13^(1/4) * sqrt(Pi) * n^(3/2) * 2^(n + 1/2) * 3^(n - 1/2)). - Vaclav Kotesovec, Aug 22 2017

A276315 G.f. A(x) satisfies: x = A(x)-3*A(x)^2-2*A(x)^3.

Original entry on oeis.org

1, 3, 20, 165, 1524, 15078, 156264, 1674585, 18404980, 206325834, 2350049208, 27118926354, 316381296840, 3725407768140, 44217602683728, 528470024711841, 6354463541900148, 76818345766932450, 933089010748085400, 11382500895815005110, 139387948563917844120
Offset: 1

Author

Tom Richardson, Aug 29 2016

Keywords

Examples

			G.f.: A(x) = x+3*x^2+20*x^3+165*x^4+1524*x^5+15078*x^6+156264*x^7+...
Related Expansions:
A(x)^2 = x^2+6*x^3+49*x^4+450*x^5+4438*x^6+45900*x^7+491181*x^8+...
A(x)^3 = x^3+9*x^4+87*x^5+882*x^6+9282*x^7+100521*x^8+1113299*x^9+...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - 3*x^2 - 2*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
  • PARI
    {a(n)=polcoeff(serreverse(x - 3*x^2 - 2*x^3 + x^2*O(x^n)), n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f.: Series_Reversion(x-3*x^2-2*x^3).
a(n) ~ (6*(18 + 5*sqrt(15))/17)^(n - 1/2) / (2*15^(1/4)*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 22 2017

A276314 G.f. A(x) satisfies: x = A(x)-A(x)^2-3*A(x)^3.

Original entry on oeis.org

1, 1, 5, 20, 104, 546, 3066, 17655, 104555, 630773, 3867617, 24020932, 150827740, 955808680, 6105327912, 39268000188, 254093573088, 1652984379150, 10804631902350, 70925539707330, 467373389649870, 3090558380977020, 20501504119375500, 136392970090612950
Offset: 1

Author

Tom Richardson, Aug 29 2016

Keywords

Examples

			G.f.: A(x) = x+x^2+5*x^3+20*x^4+104*x^5+546*x^6+3066*x^7+... Related Expansions:
A(x)^2=x^2+2*x^3+11*x^4+50*x^5+273*x^6+1500*x^7+8664*x^8+...
A(x)^3=x^3+3*x^4+18*x^5+91*x^6+522*x^7+2997*x^8+17831*x^9+...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - x^2 - 3*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
  • PARI
    {a(n)=polcoeff(serreverse(x - x^2 - 3*x^3 + x^2*O(x^n)), n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f.: Series_Reversion(x-x^2-3*x^3)
Conjecture: +169*n*(n+2)*(n-1)*a(n) +13*(n-1) *(13*n^2+26*n-220) *a(n-1) +(-7277*n^3+13423*n^2+43814*n-81700) *a(n-2) -27*(3*n-10) *(3*n-8) *(71*n+197)*a(n-3)=0. - R. J. Mathar, Sep 17 2016
a(n) ~ (29 + 20*sqrt(10))^(n - 1/2) / (2^(5/4) * 5^(1/4) * sqrt(Pi) * n^(3/2) * 13^(n - 1/2)). - Vaclav Kotesovec, Aug 22 2017

A276310 G.f. A(x) satisfies: x = A(x)-2*A(x)^2-2*A(x)^3.

Original entry on oeis.org

1, 2, 10, 60, 404, 2912, 21984, 171600, 1373680, 11215776, 93039648, 781936896, 6643741440, 56973685760, 492482782208, 4286561051904, 37536888622848, 330471001126400, 2923338431270400, 25970490200202240, 231607762146309120, 2072719382680535040
Offset: 1

Author

Tom Richardson, Aug 29 2016

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 10*x^3 + 60*x^4 + 404*x^5 + 2912*x^6 + 21984*x^7 +...
Related expansions.
A(x)^2 = x^2 + 4*x^3 + 24*x^4 + 160*x^5 + 1148*x^6 + 8640*x^7 + 67296*x^8 +...
A(x)^3 = x^3 + 6*x^4 + 42*x^5 + 308*x^6 + 2352*x^7 + 18504*x^8 +...
where x = A(x) - 2*A(x)^2 - 2*A(x)^3.
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - 2*x^2 - 2*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
  • PARI
    {a(n)=polcoeff(serreverse(x - 2*x^2 - 2*x^3 + x^2*O(x^n)), n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f.: Series_Reversion(x - 2*x^2 - 2*x^3).
Conjecture: 3*n*(n-1)*a(n) -13*(n-1)*(2*n-3)*a(n-1) -3*(3*n-5)*(3*n-7)*a(n-2)=0. - R. J. Mathar, Sep 17 2016
a(n) ~ (13 + 5*sqrt(10))^(n - 1/2) / (2^(5/4) * 5^(1/4) * sqrt(Pi) * n^(3/2) * 3^(n - 1/2)). - Vaclav Kotesovec, Aug 22 2017

A248332 Square array read by antidiagonals downwards: super Patalan numbers of order 8.

Original entry on oeis.org

1, 8, 56, 288, 224, 3360, 13056, 5376, 8960, 206080, 652800, 182784, 161280, 412160, 12776960, 34467840, 7311360, 4386816, 5935104, 20443136, 797282304, 1884241920, 321699840, 146227200, 134529024, 245317632, 1063043072, 49963024384, 105517547520, 15073935360, 5514854400, 3843686400
Offset: 0

Author

Tom Richardson, Oct 04 2014

Keywords

Comments

Generalization of super Catalan numbers, A068555, based on Patalan numbers of order 8, A025753.

Examples

			T(0..4,0..4) is
  1           8           288         13056       652800
  56          224         5376        182784      7311360
  3360        8960        161280      4386816     146227200
  206080      412160      5935104     134529024   3843686400
  12776960    20443136    245317632   4766171136  119154278400
		

Crossrefs

Cf. A068555, A025753, A034977 (first row), A216704 (first column), A248324, A248325, A248326, A248328, A248329.

Programs

  • PARI
    matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*64^(n+k)*binomial(n-1/8,n+k)) \\ Michel Marcus, Oct 09 2014

Formula

T(0,0)=1, T(n,k) = T(n-1,k)*(64*n-8)/(n+k), T(n,k) = T(n,k-1)*(64*k-56)/(n+k).
G.f.: (x/(1-64*x)^(7/8)+y/(1-64*y)^(1/8))/(x+y-64*x*y).
T(n,k) = (-1)^k*64^(n+k)*binomial(n-1/8,n+k).

A248329 Square array read by antidiagonals downwards: super Patalan numbers of order 7.

Original entry on oeis.org

1, 7, 42, 196, 147, 1911, 6860, 2744, 4459, 89180, 264110, 72030, 62426, 156065, 4213755, 10722866, 2218524, 1310946, 1747928, 5899257, 200574738, 450360372, 75060062, 33647614, 30588740, 55059732, 234003861, 9594158301, 19365495996, 2702162232, 975780806, 672952280, 825895980, 1872030888
Offset: 0

Author

Tom Richardson, Oct 04 2014

Keywords

Comments

Generalization of super Catalan numbers, A068555, based on Patalan numbers of order 7, A025752.

Examples

			T(0..4,0..4) is
  1           7          196        6860       264110
  42          147        2744       72030      2218524
  1911        4459       62426      1310946    33647614
  89180       156065     1747928    30588740   672952280
  4213755     5899257    55059732   825895980  15898497615
		

Crossrefs

Cf. A068555, A025752, A034835 (first row), A216703 (first column), A248324, A248325, A248326, A248328, A248332.

Programs

  • PARI
    matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*49^(n+k)*binomial(n-1/7,n+k)) \\ Michel Marcus, Oct 09 2014

Formula

T(0,0)=1, T(n,k) = T(n-1,k)*(49*n-7)/(n+k), T(n,k) = T(n,k-1)*(49*k-42)/(n+k).
G.f.: (x/(1-49*x)^(6/7)+y/(1-49*y)^(1/7))/(x+y-49*x*y).
T(n,k) = (-1)^k*49^(n+k)*binomial(n-1/7,n+k).

A248328 Square array read by antidiagonals downwards: super Patalan numbers of order 6.

Original entry on oeis.org

1, 6, 30, 126, 90, 990, 3276, 1260, 1980, 33660, 93366, 24570, 20790, 50490, 1161270, 2800980, 560196, 324324, 424116, 1393524, 40412196, 86830380, 14004900, 6162156, 5513508, 9754668, 40412196, 1414426860, 2753763480, 372130200, 132046200, 89791416, 108694872, 242473176, 1212365880
Offset: 0

Author

Tom Richardson, Oct 04 2014

Keywords

Comments

Generalization of super Catalan numbers, A068555, based on Patalan numbers of order 6, A025751.

Examples

			T(0..4,0..4) is
  1          6         126       3276      93366
  30         90        1260      24570     560196
  990        1980      20790     324324    6162156
  33660      50490     424116    5513508   89791416
  1161270    1393524   9754668   108694872 1548901926
		

Crossrefs

Cf. A068555, A025751, A004993 (first row), A004994 (first column), A004995 (second row), A004996 (second column), A248324, A248325, A248326, A248329, A248332.

Programs

  • PARI
    matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*36^(n+k)*binomial(n-1/6,n+k)) \\ Michel Marcus, Oct 09 2014

Formula

T(0,0)=1, T(n,k) = T(n-1,k)*(36*n-6)/(n+k), T(n,k) = T(n,k-1)*(36*k-30)/(n+k).
G.f.: (x/(1-36*x)^(5/6)+y/(1-36*y)^(1/6))/(x+y-36*x*y).
T(n,k) = (-1)^k*36^(n+k)*binomial(n-1/6,n+k).