Tom Richardson has authored 13 sequences. Here are the ten most recent ones:
A296056
Determinant of the inverse of the matrix A_n, where A_n is the n X n matrix defined by A_n[i,j] = 1/C(i+j-2) for 1 <= i,j <= n, and C(k) is the k-th Catalan number (A000108).
Original entry on oeis.org
1, -2, -1400, -679140000, -122489812645200000, -6931927717187904217987200000, -114287375178291587421201860354580633600000, -527655997339226839875614785993553970321322576128000000000, -666218073328701414704702576237379472614149140939534461737723520000000000000
Offset: 1
-
a[n_] := 1/Det@ Table[ 1/CatalanNumber[i + j -2], {i, n}, {j, n}]; Array[a, 9] (* Robert G. Wilson v, Jan 05 2018 *)
Table[Product[4^(2*k + 1) * (4*k - 1)/6 * Binomial[2*k - 3/2, k] * Binomial[2*k - 3/2, k + 1], {k, 0, n - 1}], {n, 1, 10}] (* Vaclav Kotesovec, May 19 2020 *)
-
a(n) = 1/matdet(matrix(n,n,i,j,(i+j-1)/binomial(2*i+2*j-4,i+j-2)))
A283151
Triangle read by rows: Riordan array (1/(1-9x)^(2/3), x/(9x-1)).
Original entry on oeis.org
1, 6, -1, 45, -15, 1, 360, -180, 24, -1, 2970, -1980, 396, -33, 1, 24948, -20790, 5544, -693, 42, -1, 212058, -212058, 70686, -11781, 1071, -51, 1, 1817640, -2120580, 848232, -176715, 21420, -1530, 60, -1, 15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1, 135868590, -203802885
Offset: 0
Triangle begins
1;
6, -1;
45, -15, 1;
360, -180, 24, -1;
2970, -1980, 396, -33, 1;
24948, -20790, 5544, -693, 42, -1;
212058, -212058, 70686, -11781, 1071, -51, 1;
1817640, -2120580, 848232, -176715, 21420, -1530, 60, -1;
15677145, -20902860, 9754668, -2438667, 369495, -35190, 2070, -69, 1;
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- Peter Bala, A note on the diagonals of a proper Riordan Array
- H. Prodinger, Some information about the binomial transform, The Fibonacci Quarterly, 32, 1994, 412-415.
- Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
A283150
Riordan array (1/(1-9x)^(1/3), x/(9x-1)).
Original entry on oeis.org
1, 3, -1, 18, -12, 1, 126, -126, 21, -1, 945, -1260, 315, -30, 1, 7371, -12285, 4095, -585, 39, -1, 58968, -117936, 49140, -9360, 936, -48, 1, 480168, -1120392, 560196, -133380, 17784, -1368, 57, -1, 3961386, -10563696, 6162156, -1760616, 293436, -30096, 1881, -66, 1, 33011550, -99034650, 66023100
Offset: 0
The triangle begins
1;
3, -1;
18, -12, 1;
126, -126, 21, -1;
945, -1260, 315, -30, 1;
7371, -12285, 4095, -585, 39, -1;
58968, -117936, 49140, -9360, 936, -48, 1;
480168, -1120392, 560196, -133380, 17784, -1368, 57, -1;
3961386, -10563696, 6162156, -1760616, 293436, -30096, 1881, -66, 1;
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- Peter Bala, A note on the diagonals of a proper Riordan Array
- H. Prodinger, Some information about the binomial transform, The Fibonacci Quarterly, 32, 1994, 412-415.
- Thomas M. Richardson, The three 'R's and Dual Riordan Arrays, arXiv:1609.01193 [math.CO], 2016.
-
T := (n, k) -> (-1)^k*binomial(n - 2/3, n - k)*9^(n - k):
for n from 0 to 6 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Sep 03 2021
-
a(m,n) = binomial(-n-1/3, m-n)*(-1)^m*9^(m-n);
tabl(nn) = for(n=0, nn, for (k=0, n, print1(a(n, k), ", ")); print); \\ Michel Marcus, Aug 07 2017
A276316
G.f. A(x) satisfies: x = A(x)-4*A(x)^2+A(x)^3.
Original entry on oeis.org
1, 4, 31, 300, 3251, 37744, 459060, 5773548, 74474455, 979872036, 13099102575, 177414673488, 2429310288468, 33574008073120, 467717206216760, 6560977611629676, 92595131510426943, 1313820730347196300, 18730821529411507725, 268185082351558093260
Offset: 1
G.f.: A(x) = x+4*x^2+31*x^3+300*x^4+3251*x^5+37744*x^6+459060*x^7+...
Related Expansions:
A(x)^2 = x^2+8*x^3+78*x^4+848*x^5+9863*x^6+120096*x^7+1511634*x^8+...
A(x)^3 = x^3+12*x^4+141*x^5+1708*x^6+21324*x^7+272988*x^8+3566761*x^9+...
-
S:= series(RootOf(x-4*x^2+x^3-t,x),t,100):
seq(coeff(S,t,j),j=1..100); # Robert Israel, Sep 02 2016
-
Rest[CoefficientList[InverseSeries[Series[x - 4*x^2 + x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
-
{a(n)=polcoeff(serreverse(x - 4*x^2 + x^3 + x^2*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
A276315
G.f. A(x) satisfies: x = A(x)-3*A(x)^2-2*A(x)^3.
Original entry on oeis.org
1, 3, 20, 165, 1524, 15078, 156264, 1674585, 18404980, 206325834, 2350049208, 27118926354, 316381296840, 3725407768140, 44217602683728, 528470024711841, 6354463541900148, 76818345766932450, 933089010748085400, 11382500895815005110, 139387948563917844120
Offset: 1
G.f.: A(x) = x+3*x^2+20*x^3+165*x^4+1524*x^5+15078*x^6+156264*x^7+...
Related Expansions:
A(x)^2 = x^2+6*x^3+49*x^4+450*x^5+4438*x^6+45900*x^7+491181*x^8+...
A(x)^3 = x^3+9*x^4+87*x^5+882*x^6+9282*x^7+100521*x^8+1113299*x^9+...
-
Rest[CoefficientList[InverseSeries[Series[x - 3*x^2 - 2*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
-
{a(n)=polcoeff(serreverse(x - 3*x^2 - 2*x^3 + x^2*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
A276314
G.f. A(x) satisfies: x = A(x)-A(x)^2-3*A(x)^3.
Original entry on oeis.org
1, 1, 5, 20, 104, 546, 3066, 17655, 104555, 630773, 3867617, 24020932, 150827740, 955808680, 6105327912, 39268000188, 254093573088, 1652984379150, 10804631902350, 70925539707330, 467373389649870, 3090558380977020, 20501504119375500, 136392970090612950
Offset: 1
G.f.: A(x) = x+x^2+5*x^3+20*x^4+104*x^5+546*x^6+3066*x^7+... Related Expansions:
A(x)^2=x^2+2*x^3+11*x^4+50*x^5+273*x^6+1500*x^7+8664*x^8+...
A(x)^3=x^3+3*x^4+18*x^5+91*x^6+522*x^7+2997*x^8+17831*x^9+...
-
Rest[CoefficientList[InverseSeries[Series[x - x^2 - 3*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
-
{a(n)=polcoeff(serreverse(x - x^2 - 3*x^3 + x^2*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
A276310
G.f. A(x) satisfies: x = A(x)-2*A(x)^2-2*A(x)^3.
Original entry on oeis.org
1, 2, 10, 60, 404, 2912, 21984, 171600, 1373680, 11215776, 93039648, 781936896, 6643741440, 56973685760, 492482782208, 4286561051904, 37536888622848, 330471001126400, 2923338431270400, 25970490200202240, 231607762146309120, 2072719382680535040
Offset: 1
G.f.: A(x) = x + 2*x^2 + 10*x^3 + 60*x^4 + 404*x^5 + 2912*x^6 + 21984*x^7 +...
Related expansions.
A(x)^2 = x^2 + 4*x^3 + 24*x^4 + 160*x^5 + 1148*x^6 + 8640*x^7 + 67296*x^8 +...
A(x)^3 = x^3 + 6*x^4 + 42*x^5 + 308*x^6 + 2352*x^7 + 18504*x^8 +...
where x = A(x) - 2*A(x)^2 - 2*A(x)^3.
-
Rest[CoefficientList[InverseSeries[Series[x - 2*x^2 - 2*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
-
{a(n)=polcoeff(serreverse(x - 2*x^2 - 2*x^3 + x^2*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
A248332
Square array read by antidiagonals downwards: super Patalan numbers of order 8.
Original entry on oeis.org
1, 8, 56, 288, 224, 3360, 13056, 5376, 8960, 206080, 652800, 182784, 161280, 412160, 12776960, 34467840, 7311360, 4386816, 5935104, 20443136, 797282304, 1884241920, 321699840, 146227200, 134529024, 245317632, 1063043072, 49963024384, 105517547520, 15073935360, 5514854400, 3843686400
Offset: 0
T(0..4,0..4) is
1 8 288 13056 652800
56 224 5376 182784 7311360
3360 8960 161280 4386816 146227200
206080 412160 5935104 134529024 3843686400
12776960 20443136 245317632 4766171136 119154278400
-
matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*64^(n+k)*binomial(n-1/8,n+k)) \\ Michel Marcus, Oct 09 2014
A248329
Square array read by antidiagonals downwards: super Patalan numbers of order 7.
Original entry on oeis.org
1, 7, 42, 196, 147, 1911, 6860, 2744, 4459, 89180, 264110, 72030, 62426, 156065, 4213755, 10722866, 2218524, 1310946, 1747928, 5899257, 200574738, 450360372, 75060062, 33647614, 30588740, 55059732, 234003861, 9594158301, 19365495996, 2702162232, 975780806, 672952280, 825895980, 1872030888
Offset: 0
T(0..4,0..4) is
1 7 196 6860 264110
42 147 2744 72030 2218524
1911 4459 62426 1310946 33647614
89180 156065 1747928 30588740 672952280
4213755 5899257 55059732 825895980 15898497615
-
matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*49^(n+k)*binomial(n-1/7,n+k)) \\ Michel Marcus, Oct 09 2014
A248328
Square array read by antidiagonals downwards: super Patalan numbers of order 6.
Original entry on oeis.org
1, 6, 30, 126, 90, 990, 3276, 1260, 1980, 33660, 93366, 24570, 20790, 50490, 1161270, 2800980, 560196, 324324, 424116, 1393524, 40412196, 86830380, 14004900, 6162156, 5513508, 9754668, 40412196, 1414426860, 2753763480, 372130200, 132046200, 89791416, 108694872, 242473176, 1212365880
Offset: 0
T(0..4,0..4) is
1 6 126 3276 93366
30 90 1260 24570 560196
990 1980 20790 324324 6162156
33660 50490 424116 5513508 89791416
1161270 1393524 9754668 108694872 1548901926
Cf.
A068555,
A025751,
A004993 (first row),
A004994 (first column),
A004995 (second row),
A004996 (second column),
A248324,
A248325,
A248326,
A248329,
A248332.
-
matrix(5, 5, nn, kk, n=nn-1;k=kk-1;(-1)^k*36^(n+k)*binomial(n-1/6,n+k)) \\ Michel Marcus, Oct 09 2014
Comments