cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A298799 Expansion of (1-27*x)^(-1/9).

Original entry on oeis.org

1, 3, 45, 855, 17955, 398601, 9167823, 216098685, 5186368440, 126201632040, 3104560148184, 77049538223112, 1926238455577800, 48452305767226200, 1225151160114148200, 31118839466899364280, 793530406405933789140, 20305042752151835192700
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2018

Keywords

Comments

Conjecture: a(p*n) == a(n) (mod p^2) for prime p == 1 (mod 9) and all positive integers n except those n of the form n = m*p + k for 0 <= m <= (p-1)/9 and 1 <= k <= (p-1)/9. Cf. A034171, A004981 and A004982. - Peter Bala, Dec 23 2019

Crossrefs

(1-b*x)^(-1/A003557(b)): A000984 (b=4), A004981 (b=8), A004987 (b=9), A098658 (b=12), A224881 (b=16), A034688 (b=25), this sequence (b=27), A004993 (b=36), A034835 (b=49).

Programs

  • GAP
    List([0..20],n->(3^n/Factorial(n))*Product([0..n-1],k->9*k+1)); # Muniru A Asiru, Jun 23 2018
  • Maple
    seq(coeff(series((1-27*x)^(-1/9), x, n+1), x, n), n=0..20); # Muniru A Asiru, Jun 23 2018
    # Alternative:
    A298799 := n -> (-27)^n*binomial(-1/9, n):
    seq(A298799(n), n=0..17); # Peter Luschny, Dec 26 2019
  • PARI
    N=20; x='x+O('x^N); Vec((1-27*x)^(-1/9))
    

Formula

a(n) = 3^n/n! * Product_{k=0..n-1} (9*k + 1) for n > 0.
a(n) ~ 3^(3*n) / (Gamma(1/9) * n^(8/9)). - Vaclav Kotesovec, Jun 23 2018
From Peter Luschny, Dec 26 2019: (Start)
a(n) = (-27)^n*binomial(-1/9, n).
a(n) = n! * [x^n] hypergeom([1/9], [1], 27*x). (End)
D-finite with recurrence: n*a(n) +3*(-9*n+8)*a(n-1)=0. - R. J. Mathar, Jan 20 2020

A376836 Expansion of 1/((1-x)^8 - 16*x^8)^(1/8).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 19, 91, 331, 991, 2575, 6007, 12871, 25759, 48927, 90271, 168607, 339151, 773263, 1982575, 5393455, 14709625, 38941801, 98802081, 239718961, 557984701, 1254360781, 2750444101, 5961934261, 12986219371, 28897996843, 66459189259, 158256566091
Offset: 0

Views

Author

Seiichi Manyama, Oct 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[(-16)^k * Binomial[-1/8,k] * Binomial[n,n-8*k],{k,0,Floor[n/8]}]; Array[a,36,0] (* Stefano Spezia, Oct 06 2024 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/((1-x)^8-16*x^8)^(1/8))

Formula

a(n) = Sum_{k=0..floor(n/8)} (-16)^k * binomial(-1/8,k) * binomial(n,n-8*k).

A224882 G.f.: 1/(1 - 32*x)^(1/16).

Original entry on oeis.org

1, 2, 34, 748, 18326, 476476, 12864852, 356540184, 10072260198, 288738125676, 8373405644604, 245112419778408, 7230816383463036, 214699624924363992, 6410317372741724904, 192309521182251747120, 5793324325615333881990, 175162864903898918549580
Offset: 0

Views

Author

Paul D. Hanna, Jul 23 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 34*x^2 + 748*x^3 + 18326*x^4 + 476476*x^5 +...
where
A(x)^16 = 1 + 32*x + 1024*x^2 + 32768*x^3 + 1048576*x^4 +...+ 32^n*x^n +...
Also,
A(x)^8 = 1 + 16*x + 384*x^2 + 10240*x^3 + 286720*x^4 +...+ 8^n*A000984(n)*x^n +...
A(x)^4 = 1 + 8*x + 160*x^2 + 3840*x^3 + 99840*x^4 +...+ 4^n*A004981(n)*x^n +...
A(x)^2 = 1 + 4*x + 72*x^2 + 1632*x^3 + 40800*x^4 +...+ 2^n*A224881(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-32*x)^(1/16), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 24 2013 *)
  • PARI
    {a(n)=polcoeff(1/(1-32*x +x*O(x^n))^(1/16),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=(2^n/n!)*prod(k=0, n-1, 16*k + 1)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = (2^n/n!) * Product_{k=0..n-1} (16*k + 1).
a(n) ~ 32^n/(GAMMA(1/16)*n^(15/16)). - Vaclav Kotesovec, Jul 24 2013
Showing 1-3 of 3 results.