cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A035024 Expansion of 1/(1-81*x)^(1/9), related to 9-factorial numbers A045756.

Original entry on oeis.org

1, 9, 405, 23085, 1454355, 96860043, 6683342967, 472607824095, 34027763334840, 2484026723443320, 183321172190117016, 13649094547609621464, 1023682091070721609800, 77248625487721376862600, 5859860019140007302005800, 446521333458468556412841960, 34158882009572844565582409940
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else 9*(9*n-17)*Self(n-1)/(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
    
  • Mathematica
    CoefficientList[Series[1/Surd[1-81x,9],{x,0,20}],x] (* Harvey P. Dale, Mar 08 2018 *)
    Table[9^(2*n)*Pochhammer[1/9, n]/n!, {n,0,40}] (* G. C. Greubel, Oct 19 2022 *)
  • SageMath
    [9^(2*n)*rising_factorial(1/9,n)/factorial(n) for n in range(40)] # G. C. Greubel, Oct 19 2022

Formula

a(n) = 9^n*A045756(n)/n!, n >= 1, where A045756(n) = (9*n-8)(!^9) = Product_{j=1..n} (9*j - 8).
G.f.: (1-81*x)^(-1/9).
D-finite with recurrence: n*a(n) = 9*(9*n-8)*a(n-1). - R. J. Mathar, Jan 28 2020
a(n) = 9^(2*n) * Pochhammer(n, 1/9)/n!. - G. C. Greubel, Oct 19 2022
a(n) ~ 3^(4*n) * n^(-8/9) / Gamma(1/9). - Amiram Eldar, Aug 18 2025

A053116 a(n) = ((9*n+10)(!^9))/10, related to A045756 ((9*n+1)(!^9) 9-factorials).

Original entry on oeis.org

1, 19, 532, 19684, 905464, 49800520, 3187233280, 232668029440, 19078778414080, 1736168835681280, 173616883568128000, 18924240308925952000, 2233060356453262336000, 283598665269564316672000
Offset: 0

Views

Author

Keywords

Comments

Row m=10 of the array A(10; m,n) := ((9*n+m)(!^9))/m(!^9), m >= 0, n >= 0.

Crossrefs

Cf. A051232, A045756, A035012-3, A035017-8, A035020-3 (rows m=0..9).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/(1 - 9*x)^(19/9))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 26 2018
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 18, 3*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nmax = 50}, CoefficientList[Series[1/(1 - 9*x)^(19/9), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Aug 26 2018 *)
  • PARI
    x='x+O('x^25); Vec(serlaplace(1/(1 - 9*x)^(19/9))) \\ G. C. Greubel, Aug 26 2018
    

Formula

a(n) = ((9*n+10)(!^9))/10(!^9) = A045756(n+2)/10.
E.g.f.: 1/(1-9*x)^(19/9).

A035097 Related to 9-factorial numbers A045756.

Original entry on oeis.org

1, 45, 2565, 161595, 10762227, 742593663, 52511980455, 3780862592760, 276002969271480, 20369019132235224, 1516566060845513496, 113742454563413512200, 8583180609746819651400, 651095557682223033556200, 49613481495385395156982440, 3795431334396982729509156660
Offset: 1

Views

Author

Keywords

Comments

Convolution of A035024(n-1) with A025754(n), n >= 1.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1/(1-81 x)^(1/9)-1)/(9 x),{x,0,20}],x] (* Harvey P. Dale, May 14 2011 *)

Formula

a(n) = 9^(n-1)*A045756(n)/n!, where A045756(n) = (9*n-8)(!^9) = Product_{j=1..n} (9*j-8).
G.f.: (-1+(1-81*x)^(-1/9))/9.
D-finite with recurrence: n*a(n) + 9*(-9*n+8)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
a(n) ~ 9^(2*n-1) * n^(-8/9) / Gamma(1/9). - Amiram Eldar, Aug 18 2025

A144772 Duplicate of A045756.

Original entry on oeis.org

1, 1, 10, 190, 5320, 196840, 9054640, 498005200, 31872332800, 2326680294400, 190787784140800, 17361688356812800, 1736168835681280000, 189242403089259520000, 22330603564532623360000
Offset: 0

Views

Author

Keywords

A256890 Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.

Original entry on oeis.org

1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
Offset: 0

Views

Author

Dale Gerdemann, Apr 12 2015

Keywords

Comments

Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash).
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019

Examples

			Array, t(n, k), begins as:
   1,    2,      4,        8,        16,         32,          64, ...;
   2,   12,     52,      196,       684,       2276,        7340, ...;
   4,   52,    416,     2644,     14680,      74652,      357328, ...;
   8,  196,   2644,    26440,    220280,    1623964,    10978444, ...;
  16,  684,  14680,   220280,   2643360,   27227908,   251195000, ...;
  32, 2276,  74652,  1623964,  27227908,  381190712,  4677894984, ...;
  64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
    1;
    2,     2;
    4,    12,      4;
    8,    52,     52,       8;
   16,   196,    416,     196,      16;
   32,   684,   2644,    2644,     684,      32;
   64,  2276,  14680,   26440,   14680,    2276,     64;
  128,  7340,  74652,  220280,  220280,   74652,   7340,   128;
  256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172,   256;
		

Crossrefs

Programs

  • Magma
    A256890:= func< n,k | (&+[(-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n: j in [0..k]]) >;
    [A256890(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j,0,k}], {n,0, 9}, {k,0,n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
  • PARI
    t(n,m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", ");); print(););} \\ Michel Marcus, Apr 14 2015
    
  • SageMath
    def A256890(n,k): return sum((-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n for j in range(k+1))
    flatten([[A256890(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)

A035012 One half of 9-factorial numbers.

Original entry on oeis.org

1, 11, 220, 6380, 242440, 11394680, 638102080, 41476635200, 3069271004800, 254749493398400, 23436953392652800, 2367132292657932800, 260384552192372608000, 30985761710892340352000, 3966177498994219565056000, 543366317362208080412672000, 79331482334882379740250112000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (9*n-7)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 10, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    Table[9^n*Pochhammer[2/9, n]/2, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
  • SageMath
    [9^n*rising_factorial(2/9,n)/2 for n in range(1,40)] # G. C. Greubel, Oct 18 2022

Formula

2*a(n) = (9*n-7)(!^9) := Product_{j=1..n} (9*j - 7).
E.g.f.: (-1+(1-9*x)^(-2/9))/2.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/2) * 9^n * Pochhammer(n, 2/9).
a(n) = (9*n-7)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A084949(n)/2.
Sum_{n>=1} 1/a(n) = 2*(e/9^7)^(1/9)*(Gamma(2/9) - Gamma(2/9, 1/9)). (End)

A035022 One eighth of 9-factorial numbers.

Original entry on oeis.org

1, 17, 442, 15470, 680680, 36076040, 2236714480, 158806728080, 12704538246400, 1130703903929600, 110808982585100800, 11856561136605785600, 1375361091846271129600, 171920136480783891200000, 23037298288425041420800000, 3294333655244780923174400000, 500738715597206700322508800000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (9*n-1)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
    
  • Maple
    f := gfun:-rectoproc({(9*n - 1)*a(n - 1) - a(n) = 0, a(1) = 1}, a(n), remember);
    map(f, [$ (1 .. 20)]); # Georg Fischer, Feb 15 2020
  • Mathematica
    Table[9^n*Pochhammer[8/9, n]/8, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
  • SageMath
    [9^n*rising_factorial(8/9,n)/8 for n in range(1,40)] # G. C. Greubel, Oct 19 2022

Formula

8*a(n) = (9*n-1)(!^9) := Product_{j=1..n} (9*j - 1).
a(n) = (9*n)!/(n!*2^4*3^(4*n)*5*7*A045756(n)*A035012(n)*A007559(n)*A035017(n) *A035018(n)*A034000(n) *A035021(n)).
E.g.f.: (-1+(1-9*x)^(-8/9))/8.
D-finite with recurrence: a(1) = 1, a(n) = (9*n - 1)*a(n-1) for n > 1. - Georg Fischer, Feb 15 2020
a(n) = (1/8) * 9^n * Pochhammer(n, 8/9). - G. C. Greubel, Oct 19 2022
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A049211(n)/8.
Sum_{n>=1} 1/a(n) = 8*(e/9)^(1/9)*(Gamma(8/9) - Gamma(8/9, 1/9)). (End)

A035023 One ninth of 9-factorial numbers.

Original entry on oeis.org

1, 18, 486, 17496, 787320, 42515280, 2678462640, 192849310080, 15620794116480, 1405871470483200, 139181275577836800, 15031577762406374400, 1758694598201545804800, 221595519373394771404800, 29915395115408294139648000, 4307816896618794356109312000
Offset: 1

Views

Author

Keywords

Comments

E.g.f. is g.f. for A001019(n-1) (powers of nine).

Crossrefs

Programs

  • Magma
    [9^(n-1)*Factorial(n): n in [1..40]]; // G. C. Greubel, Oct 19 2022
    
  • Mathematica
    With[{nn=20},Rest[CoefficientList[Series[(-1+1/(1-9*x))/9,{x,0,nn}],x] Range[ 0,nn]!]] (* Harvey P. Dale, Apr 07 2019 *)
    Table[9^(n-1)*n!, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
  • SageMath
    [9^(n-1)*factorial(n) for n in range(1,40)] # G. C. Greubel, Oct 19 2022

Formula

9*a(n) = (9*n)(!^9) = Product_{j=1..n} 9*j = 9^n*n!.
E.g.f.: (-1+1/(1-9*x))/9.
D-finite with recurrence: a(n) - 9*n*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 9*(exp(1/9)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 9*(1-exp(-1/9)). (End)
a(n) = A001019(n-1) * A000142(n). - G. C. Greubel, Oct 19 2022

A035013 One third of 9-factorial numbers.

Original entry on oeis.org

1, 12, 252, 7560, 294840, 14152320, 806682240, 53241027840, 3993077088000, 335418475392000, 31193918211456000, 3181779657568512000, 353177541990104832000, 42381305038812579840000, 5467188350006822799360000, 754471992300941546311680000, 110907382868238407307816960000, 17301551727445191540019445760000
Offset: 1

Views

Author

Keywords

Comments

E.g.f. is g.f. for A034171(n-1).

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (9*n-6)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 11, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    Table[9^n*Pochhammer[1/3, n]/3, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
  • SageMath
    [9^n*rising_factorial(1/3,n)/3 for n in range(1,40)] # G. C. Greubel, Oct 18 2022

Formula

3*a(n) = (9*n-6)(!^9) := Product_{j=1..n} (9*j-6) = 3^n*A007559(n).
E.g.f.: (-1+(1-9*x)^(-1/3))/3.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/3) * 9^n * Pochhammer(n, 1/3).
a(n) = (9*n-6)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A144758(n)/3.
Sum_{n>=1} 1/a(n) = 3*(e/9^6)^(1/9)*(Gamma(1/3) - Gamma(1/3, 1/9)). (End)

Extensions

Terms a(15) onward added by G. C. Greubel, Oct 18 2022

A035017 One quarter of 9-factorial numbers.

Original entry on oeis.org

1, 13, 286, 8866, 354640, 17377360, 1007886880, 67528420960, 5132159992960, 436233599401600, 41005958343750400, 4223613709406291200, 473044735453504614400, 57238412989874058342400, 7440993688683627584512000, 1034298122727024234247168000, 153076122163599586668580864000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (9*n-5)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 12, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    Table[9^n*Pochhammer[4/9, n]/4, {n,40}] (* G. C. Greubel, Oct 18 2022 *)
  • SageMath
    [9^n*rising_factorial(4/9,n)/4 for n in range(1,40)] # G. C. Greubel, Oct 18 2022

Formula

4*a(n) = (9*n-5)(!^9) := Product_{j=1..n} (9*j-5).
E.g.f.: (-1+(1-9*x)^(-4/9))/4.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/4) * 9^n * Pochhammer(n, 4/9).
a(n) = (9*n-5)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A144829(n)/4.
Sum_{n>=1} 1/a(n) = 4*(e/9^5)^(1/9)*(Gamma(4/9) - Gamma(4/9, 1/9)). (End)
Showing 1-10 of 21 results. Next