A035022
One eighth of 9-factorial numbers.
Original entry on oeis.org
1, 17, 442, 15470, 680680, 36076040, 2236714480, 158806728080, 12704538246400, 1130703903929600, 110808982585100800, 11856561136605785600, 1375361091846271129600, 171920136480783891200000, 23037298288425041420800000, 3294333655244780923174400000, 500738715597206700322508800000
Offset: 1
-
[n le 1 select 1 else (9*n-1)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
f := gfun:-rectoproc({(9*n - 1)*a(n - 1) - a(n) = 0, a(1) = 1}, a(n), remember);
map(f, [$ (1 .. 20)]); # Georg Fischer, Feb 15 2020
-
Table[9^n*Pochhammer[8/9, n]/8, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
-
[9^n*rising_factorial(8/9,n)/8 for n in range(1,40)] # G. C. Greubel, Oct 19 2022
A035023
One ninth of 9-factorial numbers.
Original entry on oeis.org
1, 18, 486, 17496, 787320, 42515280, 2678462640, 192849310080, 15620794116480, 1405871470483200, 139181275577836800, 15031577762406374400, 1758694598201545804800, 221595519373394771404800, 29915395115408294139648000, 4307816896618794356109312000
Offset: 1
-
[9^(n-1)*Factorial(n): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
With[{nn=20},Rest[CoefficientList[Series[(-1+1/(1-9*x))/9,{x,0,nn}],x] Range[ 0,nn]!]] (* Harvey P. Dale, Apr 07 2019 *)
Table[9^(n-1)*n!, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
-
[9^(n-1)*factorial(n) for n in range(1,40)] # G. C. Greubel, Oct 19 2022
A035013
One third of 9-factorial numbers.
Original entry on oeis.org
1, 12, 252, 7560, 294840, 14152320, 806682240, 53241027840, 3993077088000, 335418475392000, 31193918211456000, 3181779657568512000, 353177541990104832000, 42381305038812579840000, 5467188350006822799360000, 754471992300941546311680000, 110907382868238407307816960000, 17301551727445191540019445760000
Offset: 1
-
[n le 1 select 1 else (9*n-6)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 11, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[1/3, n]/3, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
-
[9^n*rising_factorial(1/3,n)/3 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
A035017
One quarter of 9-factorial numbers.
Original entry on oeis.org
1, 13, 286, 8866, 354640, 17377360, 1007886880, 67528420960, 5132159992960, 436233599401600, 41005958343750400, 4223613709406291200, 473044735453504614400, 57238412989874058342400, 7440993688683627584512000, 1034298122727024234247168000, 153076122163599586668580864000
Offset: 1
-
[n le 1 select 1 else (9*n-5)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 12, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[4/9, n]/4, {n,40}] (* G. C. Greubel, Oct 18 2022 *)
-
[9^n*rising_factorial(4/9,n)/4 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
A035018
One fifth of 9-factorial numbers.
Original entry on oeis.org
1, 14, 322, 10304, 422464, 21123200, 1246268800, 84746278400, 6525463436800, 561189855564800, 53313036278656000, 5544555772980224000, 626534802346765312000, 76437245886305368064000, 10013279211106003216384000, 1401859089554840450293760000, 208877004343671227093770240000
Offset: 1
-
[n le 1 select 1 else (9*n-4)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 13, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Rest[FoldList[Times,1,9*Range[20]-4]/5] (* Harvey P. Dale, May 22 2013 *)
-
[9^n*rising_factorial(5/9,n)/5 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
A035020
One sixth of 9-factorial numbers.
Original entry on oeis.org
1, 15, 360, 11880, 498960, 25446960, 1526817600, 105350414400, 8217332323200, 714907912118400, 68631159563366400, 7206271754153472000, 821514979973495808000, 101046342536739984384000, 13338117214849677938688000, 1880674527293804589355008000, 282101179094070688403251200000
Offset: 1
-
[n le 1 select 1 else (9*n-3)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 14, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[2/3, n]/6, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
-
[9^n*rising_factorial(2/3,n)/6 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
A084949
a(n) = Product_{i=0..n-1} (9*i+2).
Original entry on oeis.org
1, 2, 22, 440, 12760, 484880, 22789360, 1276204160, 82953270400, 6138542009600, 509498986796800, 46873906785305600, 4734264585315865600, 520769104384745216000, 61971523421784680704000, 7932354997988439130112000, 1086732634724416160825344000, 158662964669764759480500224000
Offset: 0
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
-
List([0..20], n-> Product([0..n-1], k-> 9*k+2) ); # G. C. Greubel, Aug 19 2019
-
[1] cat [(&*[9*k+2: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 19 2019
-
a:= n-> product(9*i+2,i=0..n-1); seq(a(j),j=0..20);
-
Table[9^n*Pochhammer[2/9, n], {n,0,20}] (* G. C. Greubel, Aug 19 2019 *)
-
vector(20, n, n--; prod(k=0, n-1, 9*k+2)) \\ G. C. Greubel, Aug 19 2019
-
[product(9*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
A035021
One seventh of 9-factorial numbers.
Original entry on oeis.org
1, 16, 400, 13600, 584800, 30409600, 1854985600, 129848992000, 10258070368000, 902710192384000, 87562888661248000, 9281666198092288000, 1067391612780613120000, 132356559984796026880000, 17603422477977871575040000, 2499685991872857763655680000, 377452584772801522312007680000
Offset: 1
-
[n le 1 select 1 else (9*n-2)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
f := gfun:-rectoproc({(9*n - 2)*a(n - 1) - a(n) = 0, a(1) = 1}, a(n), remember);
map(f, [$ (1 .. 20)]); # Georg Fischer, Feb 15 2020
-
Table[9^n*Pochhammer[7/9, n]/7, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
-
[9^n*rising_factorial(7/9,n)/7 for n in range(1,40)] # G. C. Greubel, Oct 19 2022
A035024
Expansion of 1/(1-81*x)^(1/9), related to 9-factorial numbers A045756.
Original entry on oeis.org
1, 9, 405, 23085, 1454355, 96860043, 6683342967, 472607824095, 34027763334840, 2484026723443320, 183321172190117016, 13649094547609621464, 1023682091070721609800, 77248625487721376862600, 5859860019140007302005800, 446521333458468556412841960, 34158882009572844565582409940
Offset: 0
Cf.
A007559,
A034171,
A035012,
A035013,
A035017,
A035018,
A035020,
A035021,
A035022,
A035023,
A045756,
A256190.
-
[n le 1 select 1 else 9*(9*n-17)*Self(n-1)/(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
CoefficientList[Series[1/Surd[1-81x,9],{x,0,20}],x] (* Harvey P. Dale, Mar 08 2018 *)
Table[9^(2*n)*Pochhammer[1/9, n]/n!, {n,0,40}] (* G. C. Greubel, Oct 19 2022 *)
-
[9^(2*n)*rising_factorial(1/9,n)/factorial(n) for n in range(40)] # G. C. Greubel, Oct 19 2022
A053116
a(n) = ((9*n+10)(!^9))/10, related to A045756 ((9*n+1)(!^9) 9-factorials).
Original entry on oeis.org
1, 19, 532, 19684, 905464, 49800520, 3187233280, 232668029440, 19078778414080, 1736168835681280, 173616883568128000, 18924240308925952000, 2233060356453262336000, 283598665269564316672000
Offset: 0
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/(1 - 9*x)^(19/9))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 26 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 18, 3*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nmax = 50}, CoefficientList[Series[1/(1 - 9*x)^(19/9), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Aug 26 2018 *)
-
x='x+O('x^25); Vec(serlaplace(1/(1 - 9*x)^(19/9))) \\ G. C. Greubel, Aug 26 2018
Showing 1-10 of 13 results.
Comments