cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A034385 Expansion of (1-16*x)^(-1/4), related to quartic factorial numbers.

Original entry on oeis.org

1, 4, 40, 480, 6240, 84864, 1188096, 16972800, 246105600, 3609548800, 53421322240, 796463349760, 11946950246400, 180123249868800, 2727580640870400, 41459225741230080, 632253192553758720
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A007696.
Expansion of (1-b^2*x)^(-1/b): A000984 (b=2), A004987 (b=3), this sequence (b=4), A034688 (b=5), A004993 (b=6), A034835 (b=7), A034977 (b=8), A035024 (b=9), A035308 (b=10).

Programs

  • Mathematica
    CoefficientList[Series[1/Surd[1-16x,4],{x,0,20}],x] (* Harvey P. Dale, Aug 06 2018 *)

Formula

a(n) = (4^n/n!)*A007696(n), n >= 1, a(0) := 1, A007696(n) = (4*n-3)!^4 := Product_{j = 1..n} 4*j - 3.
G.f.: (1 - 16*x)^(-1/4).
D-finite with recurrence: n*a(n) + 4*(-4*n + 3)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
From Peter Bala, Mar 31 2024: (Start)
a(n) = (-16)^n*binomial(-1/4, n).
a(n) ~ Gamma(3/4)/(sqrt(2)*Pi) * 16^n/n^(3/4).
E.g.f.: hypergeom([1/4], [1], 16*x).
a(n) = (16^n)*Sum_{k = 0..2*n} (-1)^k*binomial(-1/4, k)* binomial(-1/4, 2*n - k).
(16^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = (4^n)*binomial(2*n, n) = A098430.
Sum_{k = 0..2*n} a(k)*a(2*n-k) = (16^n)*binomial(4*n, 2*n). (End)

A386271 Expansion of 1/(1 - 49*x)^(2/7).

Original entry on oeis.org

1, 14, 441, 16464, 662676, 27832392, 1201431588, 52862989872, 2359010923038, 106417603861492, 4842000975697886, 221851681068339504, 10223664969232645476, 473434331652157890504, 22014696421825341908436, 1027352499685182622393680, 48092938891512611510804145
Offset: 0

Views

Author

Seiichi Manyama, Jul 17 2025

Keywords

Crossrefs

Cf. A020918 (k=2, m=7), A020920 (k=2, m=9), A034835 (k=7, m=1), A034977 (k=8, m=1), A035024 (k=9, m=1), A216702 (k=4, m=3), A216703 (k=7, m=6), A354019 (k=6, m=1), this sequence (k=7, m=2), A386272 (k=7, m=3), A386273 (k=7, m=4), A386274 (k=7, m=5).

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-49*x)^(2/7))

Formula

a(n) = (-49)^n * binomial(-2/7,n).
a(n) = 7^n/n! * Product_{k=0..n-1} (7*k+2).
a(n) = 7^n * Product_{k=1..n} (7 - 5/k).
In general, 1/(1 - k^2*x)^(m/k) leads to the D-finite recurrence k*(k*n-k+m)*a(n-1) - n*a(n) = 0. This sequence is case k=7, m=2: (49*n-35)*a(n-1) - n*a(n) = 0. - Georg Fischer, Jul 19 2025

A035308 Expansion of 1/(1-100*x)^(1/10), related to deca-factorial numbers A045757.

Original entry on oeis.org

1, 10, 550, 38500, 2983750, 244667500, 20796737500, 1812287125000, 160840482343750, 14475643410937500, 1317283550395312500, 120950580536296875000, 11187928699607460937500, 1041337978963463671875000, 97439482317295529296875000, 9159311337825779753906250000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-100*x)^(1/10), {x, 0, 20}], x] (* Amiram Eldar, Aug 18 2025 *)

Formula

a(n) = 10^n*A045757(n)/n!, n >= 1, where A045757(n) = (10*n-9)(!^10) = Product_{j=1..n} (10*j-9).
G.f.: (1-100*x)^(-1/10).
a(n) ~ 10^(2*n) * n^(-9/10) / Gamma(1/10). - Amiram Eldar, Aug 18 2025

A035097 Related to 9-factorial numbers A045756.

Original entry on oeis.org

1, 45, 2565, 161595, 10762227, 742593663, 52511980455, 3780862592760, 276002969271480, 20369019132235224, 1516566060845513496, 113742454563413512200, 8583180609746819651400, 651095557682223033556200, 49613481495385395156982440, 3795431334396982729509156660
Offset: 1

Views

Author

Keywords

Comments

Convolution of A035024(n-1) with A025754(n), n >= 1.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1/(1-81 x)^(1/9)-1)/(9 x),{x,0,20}],x] (* Harvey P. Dale, May 14 2011 *)

Formula

a(n) = 9^(n-1)*A045756(n)/n!, where A045756(n) = (9*n-8)(!^9) = Product_{j=1..n} (9*j-8).
G.f.: (-1+(1-81*x)^(-1/9))/9.
D-finite with recurrence: n*a(n) + 9*(-9*n+8)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
a(n) ~ 9^(2*n-1) * n^(-8/9) / Gamma(1/9). - Amiram Eldar, Aug 18 2025
Showing 1-4 of 4 results.