cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A034385 Expansion of (1-16*x)^(-1/4), related to quartic factorial numbers.

Original entry on oeis.org

1, 4, 40, 480, 6240, 84864, 1188096, 16972800, 246105600, 3609548800, 53421322240, 796463349760, 11946950246400, 180123249868800, 2727580640870400, 41459225741230080, 632253192553758720
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A007696.
Expansion of (1-b^2*x)^(-1/b): A000984 (b=2), A004987 (b=3), this sequence (b=4), A034688 (b=5), A004993 (b=6), A034835 (b=7), A034977 (b=8), A035024 (b=9), A035308 (b=10).

Programs

  • Mathematica
    CoefficientList[Series[1/Surd[1-16x,4],{x,0,20}],x] (* Harvey P. Dale, Aug 06 2018 *)

Formula

a(n) = (4^n/n!)*A007696(n), n >= 1, a(0) := 1, A007696(n) = (4*n-3)!^4 := Product_{j = 1..n} 4*j - 3.
G.f.: (1 - 16*x)^(-1/4).
D-finite with recurrence: n*a(n) + 4*(-4*n + 3)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
From Peter Bala, Mar 31 2024: (Start)
a(n) = (-16)^n*binomial(-1/4, n).
a(n) ~ Gamma(3/4)/(sqrt(2)*Pi) * 16^n/n^(3/4).
E.g.f.: hypergeom([1/4], [1], 16*x).
a(n) = (16^n)*Sum_{k = 0..2*n} (-1)^k*binomial(-1/4, k)* binomial(-1/4, 2*n - k).
(16^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = (4^n)*binomial(2*n, n) = A098430.
Sum_{k = 0..2*n} a(k)*a(2*n-k) = (16^n)*binomial(4*n, 2*n). (End)

A035323 Related to deca-factorial numbers A045757.

Original entry on oeis.org

1, 55, 3850, 298375, 24466750, 2079673750, 181228712500, 16084048234375, 1447564341093750, 131728355039531250, 12095058053629687500, 1118792869960746093750, 104133797896346367187500, 9743948231729552929687500, 915931133782577975390625000, 86441000750730796427490234375
Offset: 1

Views

Author

Keywords

Comments

Convolution of A035308(n-1) with A025755(n), n >= 1.

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[(-1 + (1 - 100 x)^(-1/10))/10, {x, 0, 13}], x] (* Michael De Vlieger, Oct 13 2019 *)

Formula

a(n) = 10^(n-1)*A045757(n)/n!, where A045757(n) = (10*n-9)(!^10) = Product_{j=1..n} (10*j-9).
G.f.: (-1+(1-100*x)^(-1/10))/10.
D-finite with recurrence: n*a(n) + 10*(-10*n+9)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
a(n) ~ 10^(2*n-1) * n^(-9/10) / Gamma(1/10). - Amiram Eldar, Aug 18 2025
Showing 1-2 of 2 results.