A049211
a(n) = Product_{k=1..n} (9*k - 1); 9-factorial numbers.
Original entry on oeis.org
1, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, 1270453824640, 101636305971200, 9045631231436800, 886471860680806400, 94852489092846284800, 11002888734770169036800, 1375361091846271129600000, 184298386307400331366400000, 26354669241958247385395200000
Offset: 0
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6),
A049209 (m=7),
A049210 (m=8), this sequence (m=9),
A049212 (m=10),
A254322 (m=11),
A346896 (m=12).
-
m:=9; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..20]]; // G. C. Greubel, Feb 08 2022
-
CoefficientList[Series[(1-9*x)^(-8/9),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
-
a(n) = prod(k=1, n, 9*k-1); \\ Michel Marcus, Jan 08 2015
-
m=9; [m^n*rising_factorial((m-1)/m, n) for n in (0..20)] # G. C. Greubel, Feb 08 2022
a(9) (originally given incorrectly as 1011636305971200) corrected by
Peter Bala, Feb 20 2015
a(16) corrected and incorrect MAGMA program removed by
Georg Fischer, May 10 2021
A035012
One half of 9-factorial numbers.
Original entry on oeis.org
1, 11, 220, 6380, 242440, 11394680, 638102080, 41476635200, 3069271004800, 254749493398400, 23436953392652800, 2367132292657932800, 260384552192372608000, 30985761710892340352000, 3966177498994219565056000, 543366317362208080412672000, 79331482334882379740250112000
Offset: 1
-
[n le 1 select 1 else (9*n-7)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 10, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[2/9, n]/2, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
-
[9^n*rising_factorial(2/9,n)/2 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
A035023
One ninth of 9-factorial numbers.
Original entry on oeis.org
1, 18, 486, 17496, 787320, 42515280, 2678462640, 192849310080, 15620794116480, 1405871470483200, 139181275577836800, 15031577762406374400, 1758694598201545804800, 221595519373394771404800, 29915395115408294139648000, 4307816896618794356109312000
Offset: 1
-
[9^(n-1)*Factorial(n): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
With[{nn=20},Rest[CoefficientList[Series[(-1+1/(1-9*x))/9,{x,0,nn}],x] Range[ 0,nn]!]] (* Harvey P. Dale, Apr 07 2019 *)
Table[9^(n-1)*n!, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
-
[9^(n-1)*factorial(n) for n in range(1,40)] # G. C. Greubel, Oct 19 2022
A035013
One third of 9-factorial numbers.
Original entry on oeis.org
1, 12, 252, 7560, 294840, 14152320, 806682240, 53241027840, 3993077088000, 335418475392000, 31193918211456000, 3181779657568512000, 353177541990104832000, 42381305038812579840000, 5467188350006822799360000, 754471992300941546311680000, 110907382868238407307816960000, 17301551727445191540019445760000
Offset: 1
-
[n le 1 select 1 else (9*n-6)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 11, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[1/3, n]/3, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
-
[9^n*rising_factorial(1/3,n)/3 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
A035017
One quarter of 9-factorial numbers.
Original entry on oeis.org
1, 13, 286, 8866, 354640, 17377360, 1007886880, 67528420960, 5132159992960, 436233599401600, 41005958343750400, 4223613709406291200, 473044735453504614400, 57238412989874058342400, 7440993688683627584512000, 1034298122727024234247168000, 153076122163599586668580864000
Offset: 1
-
[n le 1 select 1 else (9*n-5)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 12, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[4/9, n]/4, {n,40}] (* G. C. Greubel, Oct 18 2022 *)
-
[9^n*rising_factorial(4/9,n)/4 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
A035018
One fifth of 9-factorial numbers.
Original entry on oeis.org
1, 14, 322, 10304, 422464, 21123200, 1246268800, 84746278400, 6525463436800, 561189855564800, 53313036278656000, 5544555772980224000, 626534802346765312000, 76437245886305368064000, 10013279211106003216384000, 1401859089554840450293760000, 208877004343671227093770240000
Offset: 1
-
[n le 1 select 1 else (9*n-4)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 13, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Rest[FoldList[Times,1,9*Range[20]-4]/5] (* Harvey P. Dale, May 22 2013 *)
-
[9^n*rising_factorial(5/9,n)/5 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
A035020
One sixth of 9-factorial numbers.
Original entry on oeis.org
1, 15, 360, 11880, 498960, 25446960, 1526817600, 105350414400, 8217332323200, 714907912118400, 68631159563366400, 7206271754153472000, 821514979973495808000, 101046342536739984384000, 13338117214849677938688000, 1880674527293804589355008000, 282101179094070688403251200000
Offset: 1
-
[n le 1 select 1 else (9*n-3)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 14, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[2/3, n]/6, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
-
[9^n*rising_factorial(2/3,n)/6 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
A035021
One seventh of 9-factorial numbers.
Original entry on oeis.org
1, 16, 400, 13600, 584800, 30409600, 1854985600, 129848992000, 10258070368000, 902710192384000, 87562888661248000, 9281666198092288000, 1067391612780613120000, 132356559984796026880000, 17603422477977871575040000, 2499685991872857763655680000, 377452584772801522312007680000
Offset: 1
-
[n le 1 select 1 else (9*n-2)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
f := gfun:-rectoproc({(9*n - 2)*a(n - 1) - a(n) = 0, a(1) = 1}, a(n), remember);
map(f, [$ (1 .. 20)]); # Georg Fischer, Feb 15 2020
-
Table[9^n*Pochhammer[7/9, n]/7, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
-
[9^n*rising_factorial(7/9,n)/7 for n in range(1,40)] # G. C. Greubel, Oct 19 2022
A035024
Expansion of 1/(1-81*x)^(1/9), related to 9-factorial numbers A045756.
Original entry on oeis.org
1, 9, 405, 23085, 1454355, 96860043, 6683342967, 472607824095, 34027763334840, 2484026723443320, 183321172190117016, 13649094547609621464, 1023682091070721609800, 77248625487721376862600, 5859860019140007302005800, 446521333458468556412841960, 34158882009572844565582409940
Offset: 0
Cf.
A007559,
A034171,
A035012,
A035013,
A035017,
A035018,
A035020,
A035021,
A035022,
A035023,
A045756,
A256190.
-
[n le 1 select 1 else 9*(9*n-17)*Self(n-1)/(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
CoefficientList[Series[1/Surd[1-81x,9],{x,0,20}],x] (* Harvey P. Dale, Mar 08 2018 *)
Table[9^(2*n)*Pochhammer[1/9, n]/n!, {n,0,40}] (* G. C. Greubel, Oct 19 2022 *)
-
[9^(2*n)*rising_factorial(1/9,n)/factorial(n) for n in range(40)] # G. C. Greubel, Oct 19 2022
A147629
9-factorial numbers (4).
Original entry on oeis.org
1, 5, 70, 1610, 51520, 2112320, 105616000, 6231344000, 423731392000, 32627317184000, 2805949277824000, 266565181393280000, 27722778864901120000, 3132674011733826560000, 382186229431526840320000, 50066396055530016081920000, 7009295447774202251468800000
Offset: 1
Cf.
A035012,
A035013,
A035017,
A035018,
A035020,
A035022,
A035023,
A045756,
A048994,
A049211,
A051232,
A053116,
A132393.
-
[Round(9^(n-1)*Gamma(n-1 +5/9)/Gamma(5/9)): n in [1..20]]; // G. C. Greubel, Dec 03 2019
-
seq(9^(n-1)*pochhammer(5/9, n-1), n = 1..20); # G. C. Greubel, Dec 03 2019
-
Table[9^(n-1)*Pochhammer[5/9, n-1], {n,20}] (* G. C. Greubel, Dec 03 2019 *)
-
vector(20, n, prod(j=0,n-2, 9*j+5) ) \\ G. C. Greubel, Dec 03 2019
-
[9^(n-1)*rising_factorial(5/9, n-1) for n in (1..20)] # G. C. Greubel, Dec 03 2019
Showing 1-10 of 13 results.
Comments