A051232
9-factorial numbers.
Original entry on oeis.org
1, 9, 162, 4374, 157464, 7085880, 382637520, 24106163760, 1735643790720, 140587147048320, 12652843234348800, 1252631480200531200, 135284199861657369600, 15828251383813912243200, 1994359674360552942643200, 269238556038674647256832000
Offset: 0
-
[9^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
-
with(combstruct):A:=[N,{N=Cycle(Union(Z$9))},labeled]: seq(count(A,size=n+1)/9, n=0..14); # Zerinvary Lajos, Dec 05 2007
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 8, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
A147629
9-factorial numbers (4).
Original entry on oeis.org
1, 5, 70, 1610, 51520, 2112320, 105616000, 6231344000, 423731392000, 32627317184000, 2805949277824000, 266565181393280000, 27722778864901120000, 3132674011733826560000, 382186229431526840320000, 50066396055530016081920000, 7009295447774202251468800000
Offset: 1
Cf.
A035012,
A035013,
A035017,
A035018,
A035020,
A035022,
A035023,
A045756,
A048994,
A049211,
A051232,
A053116,
A132393.
-
[Round(9^(n-1)*Gamma(n-1 +5/9)/Gamma(5/9)): n in [1..20]]; // G. C. Greubel, Dec 03 2019
-
seq(9^(n-1)*pochhammer(5/9, n-1), n = 1..20); # G. C. Greubel, Dec 03 2019
-
Table[9^(n-1)*Pochhammer[5/9, n-1], {n,20}] (* G. C. Greubel, Dec 03 2019 *)
-
vector(20, n, prod(j=0,n-2, 9*j+5) ) \\ G. C. Greubel, Dec 03 2019
-
[9^(n-1)*rising_factorial(5/9, n-1) for n in (1..20)] # G. C. Greubel, Dec 03 2019
A147630
a(1) = 1; for n>1, a(n) = Product_{k = 1..n-1} (9k - 3).
Original entry on oeis.org
1, 6, 90, 2160, 71280, 2993760, 152681760, 9160905600, 632102486400, 49303993939200, 4289447472710400, 411786957380198400, 43237630524920832000, 4929089879840974848000, 606278055220439906304000, 80028703289098067632128000, 11284047163762827536130048000
Offset: 1
Cf.
A147629,
A049211,
A051232,
A045756,
A035012,
A035013,
A035017,
A035018,
A035020,
A035022,
A035023,
A053116.
-
[Round(9^n*Gamma(n+6/9)/Gamma(6/9)): n in [0..20]]; // Vincenzo Librandi, Feb 21 2015
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst,s],{n,5,2*5!,9}];lst
Table[Product[9k-3,{k,1,n-1}],{n,20}] (* Harvey P. Dale, Sep 01 2016 *)
-
a(n):=n!*sum(binomial(k,n-k-1)*3^k*(-1)^(n-k-1)*binomial(n+k-1,n-1),k,1,n-1)/n; /* Vladimir Kruchinin, Apr 01 2011 */
-
a(n) = n--; prod(k=1, n, 9*k-3); \\ Michel Marcus, Feb 28 2015
A147631
9-factorial numbers (6).
Original entry on oeis.org
1, 7, 112, 2800, 95200, 4093600, 212867200, 12984899200, 908942944000, 71806492576000, 6318971346688000, 612940220628736000, 64971663386646016000, 7471741289464291840000, 926495919893572188160000, 123223957345845101025280000, 17497801943110004345589760000
Offset: 1
Cf.
A147630,
A147629,
A049211,
A051232,
A045756,
A035012,
A035013,
A035017,
A035018,
A035020,
A035022,
A035023,
A053116.
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst,s],{n,6,2*5!,9}];lst
Showing 1-4 of 4 results.
Comments