A051262
10-factorial numbers.
Original entry on oeis.org
1, 10, 200, 6000, 240000, 12000000, 720000000, 50400000000, 4032000000000, 362880000000000, 36288000000000000, 3991680000000000000, 479001600000000000000, 62270208000000000000000
Offset: 0
a(n) =
A048176(n+1, 0)*(-1)^n (first column of unsigned triangle).
-
[10^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
-
with(combstruct):A:=[N,{N=Cycle(Union(Z$10))},labeled]: seq(count(A,size=n)/10,n=0..14); # Zerinvary Lajos, Dec 05 2007
-
Array[#!*10^# &, 14, 0] (* Michael De Vlieger, Sep 04 2017 *)
A053116
a(n) = ((9*n+10)(!^9))/10, related to A045756 ((9*n+1)(!^9) 9-factorials).
Original entry on oeis.org
1, 19, 532, 19684, 905464, 49800520, 3187233280, 232668029440, 19078778414080, 1736168835681280, 173616883568128000, 18924240308925952000, 2233060356453262336000, 283598665269564316672000
Offset: 0
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/(1 - 9*x)^(19/9))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 26 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 18, 3*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nmax = 50}, CoefficientList[Series[1/(1 - 9*x)^(19/9), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Aug 26 2018 *)
-
x='x+O('x^25); Vec(serlaplace(1/(1 - 9*x)^(19/9))) \\ G. C. Greubel, Aug 26 2018
A147629
9-factorial numbers (4).
Original entry on oeis.org
1, 5, 70, 1610, 51520, 2112320, 105616000, 6231344000, 423731392000, 32627317184000, 2805949277824000, 266565181393280000, 27722778864901120000, 3132674011733826560000, 382186229431526840320000, 50066396055530016081920000, 7009295447774202251468800000
Offset: 1
Cf.
A035012,
A035013,
A035017,
A035018,
A035020,
A035022,
A035023,
A045756,
A048994,
A049211,
A051232,
A053116,
A132393.
-
[Round(9^(n-1)*Gamma(n-1 +5/9)/Gamma(5/9)): n in [1..20]]; // G. C. Greubel, Dec 03 2019
-
seq(9^(n-1)*pochhammer(5/9, n-1), n = 1..20); # G. C. Greubel, Dec 03 2019
-
Table[9^(n-1)*Pochhammer[5/9, n-1], {n,20}] (* G. C. Greubel, Dec 03 2019 *)
-
vector(20, n, prod(j=0,n-2, 9*j+5) ) \\ G. C. Greubel, Dec 03 2019
-
[9^(n-1)*rising_factorial(5/9, n-1) for n in (1..20)] # G. C. Greubel, Dec 03 2019
A196347
Triangle T(n, k) read by rows, T(n, k) = n!*binomial(n, k).
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 6, 18, 18, 6, 24, 96, 144, 96, 24, 120, 600, 1200, 1200, 600, 120, 720, 4320, 10800, 14400, 10800, 4320, 720, 5040, 35280, 105840, 176400, 176400, 105840, 35280, 5040, 40320, 322560, 1128960, 2257920, 2822400, 2257920, 1128960, 322560, 40320
Offset: 0
Triangle begins:
1;
1, 1;
2, 4, 2;
6, 18, 18, 6;
24, 96, 144, 96, 24;
120, 600, 1200, 1200, 600, 120;
...
- G. C. Greubel, Table of n, a(n) for n = 0..495
- P. Bala, Deformations of the Hadamard product of power series
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- M. Dukes, C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
-
/* As triangle */ [[Factorial(n)*Binomial(n, k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 28 2015
-
Table[n!*Binomial[n, j], {n, 0, 30}, {j, 0, n}] (* G. C. Greubel, Sep 27 2015 *)
-
factorial(n)*binomial(n,k) # Danny Rorabaugh, Sep 27 2015
A147630
a(1) = 1; for n>1, a(n) = Product_{k = 1..n-1} (9k - 3).
Original entry on oeis.org
1, 6, 90, 2160, 71280, 2993760, 152681760, 9160905600, 632102486400, 49303993939200, 4289447472710400, 411786957380198400, 43237630524920832000, 4929089879840974848000, 606278055220439906304000, 80028703289098067632128000, 11284047163762827536130048000
Offset: 1
Cf.
A147629,
A049211,
A051232,
A045756,
A035012,
A035013,
A035017,
A035018,
A035020,
A035022,
A035023,
A053116.
-
[Round(9^n*Gamma(n+6/9)/Gamma(6/9)): n in [0..20]]; // Vincenzo Librandi, Feb 21 2015
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst,s],{n,5,2*5!,9}];lst
Table[Product[9k-3,{k,1,n-1}],{n,20}] (* Harvey P. Dale, Sep 01 2016 *)
-
a(n):=n!*sum(binomial(k,n-k-1)*3^k*(-1)^(n-k-1)*binomial(n+k-1,n-1),k,1,n-1)/n; /* Vladimir Kruchinin, Apr 01 2011 */
-
a(n) = n--; prod(k=1, n, 9*k-3); \\ Michel Marcus, Feb 28 2015
A131182
Table T(n,k) = n!*k^n, read by upwards antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 8, 3, 1, 0, 24, 48, 18, 4, 1, 0, 120, 384, 162, 32, 5, 1, 0, 720, 3840, 1944, 384, 50, 6, 1, 0, 5040, 46080, 29160, 6144, 750, 72, 7, 1, 0, 40320, 645120, 524880, 122880, 15000, 1296, 98, 8, 1, 0, 362880, 10321920, 11022480, 2949120, 375000, 31104, 2058, 128, 9, 1
Offset: 0
The (inverted) table begins:
k=0: 1, 0, 0, 0, 0, 0, ... (A000007)
k=1: 1, 1, 2, 6, 24, 120, ... (A000142)
k=2: 1, 2, 8, 48, 384, 3840, ... (A000165)
k=3: 1, 3, 18, 162, 1944, 29160, ... (A032031)
k=4: 1, 4, 32, 384, 6144, 122880, ... (A047053)
k=5: 1, 5, 50, 750, 15000, 375000, ... (A052562)
k=6: 1, 6, 72, 1296, 31104, 933120, ... (A047058)
k=7: 1, 7, 98, 2058, 57624, 2016840, ... (A051188)
k=8: 1, 8, 128, 3072, 98304, 3932160, ... (A051189)
k=9: 1, 9, 162, 4374, 157464, 7085880, ... (A051232)
Main diagonal is 1, 1, 8, 162, 6144, 375000, ... (A061711).
-
T:= (n,k)-> n!*k^n:
seq(seq(T(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Jan 06 2019
-
from math import factorial
def A131182_T(n, k): # compute T(n, k)
return factorial(n)*k**n # Chai Wah Wu, Sep 01 2022
A051231
Generalized Stirling number triangle of the first kind.
Original entry on oeis.org
1, -9, 1, 162, -27, 1, -4374, 891, -54, 1, 157464, -36450, 2835, -90, 1, -7085880, 1797714, -164025, 6885, -135, 1, 382637520, -104162436, 10655064, -535815, 14175, -189, 1, -24106163760, 6944870988, -775431468, 44411409, -1428840, 26082, -252, 1
Offset: 1
Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-9, 1;
162, -27, 1;
-4374, 891, -54, 1;
157464, -36450, 2835, -90, 1;
-7085880, 1797714, -164025, 6885, -135, 1;
...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x-9*j) = 162*x - 27*x^2 + x^3. [Edited by _Petros Hadjicostas_, Jun 06 2020]
- D. S. Mitrinovic, Sur une relation de récurrence relative aux nombres de Bernoulli, Comptes rendus de l'Académie des sciences de Paris, t. 250 (1960), 4266-4267.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les polynômes de Stirling, Bulletin de la Société des mathématiciens et physiciens de la R. P. de Serbie, t. 10 (1958), 43-49.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les nombres de Stirling et les nombres de Bernoulli d'ordre supérieux, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 43 (1960), 1-63.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur une classe de nombres se rattachant aux nombres de Stirling--Appendice: Table des nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 60 (1961), 1-15 and 17-62.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling. V, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 132/142 (1965), 1-22.
- Niels Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
- Wikipedia, Dragoslav Mitrinovic.
First (m=1) column sequence is
A051232(n-1).
Row sums (signed triangle):
A049211(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A045756(n).
A196258
a(n) = 11^n*n!.
Original entry on oeis.org
1, 11, 242, 7986, 351384, 19326120, 1275523920, 98215341840, 8642950081920, 855652058110080, 94121726392108800, 11388728893445164800, 1503312213934761753600, 214973646592670930764800, 33105941575271323337779200
Offset: 0
Cf.
A000142,
A000165,
A032031,
A047053,
A052562,
A047058,
A051188,
A051189,
A051232,
A051262,
A145448.
A147631
9-factorial numbers (6).
Original entry on oeis.org
1, 7, 112, 2800, 95200, 4093600, 212867200, 12984899200, 908942944000, 71806492576000, 6318971346688000, 612940220628736000, 64971663386646016000, 7471741289464291840000, 926495919893572188160000, 123223957345845101025280000, 17497801943110004345589760000
Offset: 1
Cf.
A147630,
A147629,
A049211,
A051232,
A045756,
A035012,
A035013,
A035017,
A035018,
A035020,
A035022,
A035023,
A053116.
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst,s],{n,6,2*5!,9}];lst
Showing 1-9 of 9 results.
Comments