A326659
T(n,k) = [0=0]; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 2, 1, 15, 18, 6, 1, 64, 132, 96, 24, 1, 325, 980, 1140, 600, 120, 1, 1956, 7830, 12720, 10440, 4320, 720, 1, 13699, 68502, 143850, 162120, 103320, 35280, 5040, 1, 109600, 657608, 1698816, 2447760, 2123520, 1108800, 322560, 40320
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 4, 2;
1, 15, 18, 6;
1, 64, 132, 96, 24;
1, 325, 980, 1140, 600, 120;
1, 1956, 7830, 12720, 10440, 4320, 720;
1, 13699, 68502, 143850, 162120, 103320, 35280, 5040;
...
-
T:= proc(n, k) option remember;
`if`(0=0, 1, 0)
end:
seq(seq(T(n, k), k=0..n), n=0..10);
-
T[n_ /; n >= 0, k_ /; k >= 0] := T[n, k] = Boole[0 < k <= n]*n*(T[n-1, k-1] + T[n-1, k]) + Boole[k == 0 && n >= 0];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 09 2021 *)
A174690
Triangle T(n, k) = n!*binomial(n, k) - n! + 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 13, 13, 1, 1, 73, 121, 73, 1, 1, 481, 1081, 1081, 481, 1, 1, 3601, 10081, 13681, 10081, 3601, 1, 1, 30241, 100801, 171361, 171361, 100801, 30241, 1, 1, 282241, 1088641, 2217601, 2782081, 2217601, 1088641, 282241, 1, 1, 2903041, 12700801, 30119041, 45360001, 45360001, 30119041, 12700801, 2903041, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 13, 13, 1;
1, 73, 121, 73, 1;
1, 481, 1081, 1081, 481, 1;
1, 3601, 10081, 13681, 10081, 3601, 1;
1, 30241, 100801, 171361, 171361, 100801, 30241, 1;
1, 282241, 1088641, 2217601, 2782081, 2217601, 1088641, 282241, 1;
-
[Factorial(n)*(Binomial(n,k) -1) + 1: k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 09 2021
-
T[n_, k_]:= n!*Binomial[n, k] - n! + 1;
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
-
flatten([[factorial(n)*(binomial(n,k) -1) + 1 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 09 2021
A253666
Triangle read by rows, T(n,k) = C(n,k)*n!/(floor(n/2)!)^2, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 6, 18, 18, 6, 6, 24, 36, 24, 6, 30, 150, 300, 300, 150, 30, 20, 120, 300, 400, 300, 120, 20, 140, 980, 2940, 4900, 4900, 2940, 980, 140, 70, 560, 1960, 3920, 4900, 3920, 1960, 560, 70, 630, 5670, 22680, 52920, 79380, 79380, 52920, 22680, 5670, 630
Offset: 0
Triangle begins:
. 1;
. 1, 1;
. 2, 4, 2;
. 6, 18, 18, 6;
. 6, 24, 36, 24, 6;
. 30, 150, 300, 300, 150, 30;
. 20, 120, 300, 400, 300, 120, 20;
. 140, 980, 2940, 4900, 4900, 2940, 980, 140;
. 70, 560, 1960, 3920, 4900, 3920, 1960, 560, 70;
. 630, 5670, 22680, 52920, 79380, 79380, 52920, 22680, 5670, 630; etc.
-
[Binomial(n,k)*Factorial(n)/Factorial(Floor(n/2))^2: k in [0..n], n in [0..10]]; // Bruno Berselli, Feb 02 2015
-
T := (n,k) -> n!*binomial(n,k)/(iquo(n,2)!)^2:
seq(print(seq(T(n,k), k=0..n)), n=0..9);
A360283
a(n) = lcm({n! * binomial(n, k) for k = 0..n}).
Original entry on oeis.org
1, 1, 4, 18, 288, 1200, 43200, 529200, 11289600, 91445760, 9144576000, 92207808000, 13277924352000, 160283515392000, 2094371267788800, 58904191906560000, 15079473128079360000, 242109318556385280000, 78443419212268830720000, 1415903716781452394496000
Offset: 0
-
a := n -> ilcm(seq(n!*binomial(n, k), k=0..n)):
seq(a(n), n = 0..19);
-
from math import factorial, lcm
def A360283(n): return factorial(n)*lcm(*(i for i in range(1,n+2)))//(n+1) # Chai Wah Wu, Feb 15 2023
Showing 1-4 of 4 results.
Comments