cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A174689 Triangle T(n, k) = n! * binomial(n, k)^2 - n! + 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 49, 49, 1, 1, 361, 841, 361, 1, 1, 2881, 11881, 11881, 2881, 1, 1, 25201, 161281, 287281, 161281, 25201, 1, 1, 241921, 2217601, 6168961, 6168961, 2217601, 241921, 1, 1, 2540161, 31570561, 126403201, 197527681, 126403201, 31570561, 2540161, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 27 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,       1;
  1,       7,        1;
  1,      49,       49,         1;
  1,     361,      841,       361,         1;
  1,    2881,    11881,     11881,      2881,         1;
  1,   25201,   161281,    287281,    161281,     25201,        1;
  1,  241921,  2217601,   6168961,   6168961,   2217601,   241921,       1;
  1, 2540161, 31570561, 126403201, 197527681, 126403201, 31570561, 2540161, 1;
		

Crossrefs

Programs

  • Magma
    [Factorial(n)*(Binomial(n, k)^2 -1) + 1: k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 10 2021
  • Mathematica
    T[n_, k_]:= n!*Binomial[n, k]^2 - n! + 1;
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
  • Sage
    flatten([[factorial(n)*(binomial(n, k)^2 -1) + 1 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 10 2021
    

Formula

T(n, k) = n! * binomial(n, k)^2 - n! + 1.
From G. C. Greubel, Feb 10 2021: (Start)
T(n, k) = n! * ( A008459(n, k) - 1 ) + 1.
Sum_{k=0..n} T(n, k) = (n+1)*( n!*( C_{n} - 1 ) + 1 ) = (n+1)*( n!*( A000108(n) - 1 ) + 1). (End)

Extensions

Edited by G. C. Greubel, Feb 10 2021
Showing 1-1 of 1 results.