A049210
a(n) = -Product_{k=0..n} (8*k-1); octo-factorial numbers.
Original entry on oeis.org
1, 7, 105, 2415, 74865, 2919735, 137227545, 7547514975, 475493443425, 33760034483175, 2667042724170825, 232032717002861775, 22043108115271868625, 2270440135873002468375, 252018855081903273989625, 29990243754746489604765375, 3808760956852804179805202625
Offset: 0
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6),
A049209 (m=7), this sequence (m=8),
A049211 (m=9),
A049212 (m=10),
A254322 (m=11),
A346896 (m=12).
-
m:=8; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..30]]; // G. C. Greubel, Feb 16 2022
-
FoldList[Times,1,8*Range[20]-1] (* Harvey P. Dale, Aug 03 2014 *)
CoefficientList[Series[(1-8*x)^(-7/8),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
-
a(n) = -prod(k=0, n, 8*k-1); \\ Michel Marcus, Jan 08 2015
-
m=8; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022
A034976
One eighth of octo-factorial numbers.
Original entry on oeis.org
1, 16, 384, 12288, 491520, 23592960, 1321205760, 84557168640, 6088116142080, 487049291366400, 42860337640243200, 4114592413463347200, 427917611000188108800, 47926772432021068185600, 5751212691842528182272000, 736155224555843607330816000
Offset: 1
-
[8^(n-1)*Factorial(n): n in [1..40]]; // G. C. Greubel, Oct 20 2022
-
Table[8^(n-1)*n!, {n,40}] (* G. C. Greubel, Oct 20 2022 *)
-
[8^(n-1)*factorial(n) for n in range(1,40)] # G. C. Greubel, Oct 20 2022
A025753
8th-order Patalan numbers (generalization of Catalan numbers).
Original entry on oeis.org
1, 1, 28, 1120, 51520, 2555392, 132880384, 7137574912, 392566620160, 21983730728960, 1248675905404928, 71742106565083136, 4161042180774821888, 243260927491451125760, 14317643160925409116160, 847604475126784219676672, 50432466270043661070761984, 3014081513550844685170245632
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seq., Vol. 3 (2000), Article 00.2.4.
- Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
- Thomas M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015), Article 15.3.3; arXiv preprint, arXiv:1410.5880 [math.CO], 2014.
-
CoefficientList[Series[(9 - (1 - 64*x)^(1/8))/8, {x, 0, 20}], x] (* Vincenzo Librandi, Dec 29 2012 *)
a[n_] := 64^(n-1) * Pochhammer[7/8, n-1]/n!; a[0] = 1; Array[a, 20, 0] (* Amiram Eldar, Aug 20 2025 *)
A053115
a(n) = ((8*n+10)(!^8))/20, related to A034908 ((8*n+2)(!^8) octo- or 8-factorials).
Original entry on oeis.org
1, 18, 468, 15912, 668304, 33415200, 1938081600, 127913385600, 9465590534400, 776178423820800, 69856058143872000, 6845893698099456000, 725664731998542336000, 82725779447833826304000
Offset: 0
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-8*x)^(9/4))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 26 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 17, 5!, 8}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nmax = 50}, CoefficientList[Series[1/(1 - 8*x)^(9/4), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Aug 26 2018 *)
-
x='x+O('x^25); Vec(serlaplace(1/(1-8*x)^(9/4))) \\ G. C. Greubel, Aug 26 2018
A053114
a(n) = ((8*n+9)(!^8))/9, related to A045755 ((8*n+1)(!^8) octo- or 8-factorials).
Original entry on oeis.org
1, 17, 425, 14025, 575025, 28176225, 1606044825, 104392913625, 7620682694625, 617275298264625, 54937501545551625, 5328937649918507625, 559538453241443300625, 63227845216283092970625
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(1/(1-8*x)^(17/8))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 16 2018
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 16, 5!, 8}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
With[{nn = 30}, CoefficientList[Series[1/(1 - 8*x)^(17/8), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 16 2018 *)
-
x='x+O('x^30); Vec(serlaplace(1/(1-8*x)^(17/8))) \\ G. C. Greubel, Aug 16 2018
Showing 1-5 of 5 results.
Comments