cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A256890 Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.

Original entry on oeis.org

1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
Offset: 0

Views

Author

Dale Gerdemann, Apr 12 2015

Keywords

Comments

Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash).
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019

Examples

			Array, t(n, k), begins as:
   1,    2,      4,        8,        16,         32,          64, ...;
   2,   12,     52,      196,       684,       2276,        7340, ...;
   4,   52,    416,     2644,     14680,      74652,      357328, ...;
   8,  196,   2644,    26440,    220280,    1623964,    10978444, ...;
  16,  684,  14680,   220280,   2643360,   27227908,   251195000, ...;
  32, 2276,  74652,  1623964,  27227908,  381190712,  4677894984, ...;
  64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
    1;
    2,     2;
    4,    12,      4;
    8,    52,     52,       8;
   16,   196,    416,     196,      16;
   32,   684,   2644,    2644,     684,      32;
   64,  2276,  14680,   26440,   14680,    2276,     64;
  128,  7340,  74652,  220280,  220280,   74652,   7340,   128;
  256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172,   256;
		

Crossrefs

Programs

  • Magma
    A256890:= func< n,k | (&+[(-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n: j in [0..k]]) >;
    [A256890(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j,0,k}], {n,0, 9}, {k,0,n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
  • PARI
    t(n,m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", ");); print(););} \\ Michel Marcus, Apr 14 2015
    
  • SageMath
    def A256890(n,k): return sum((-1)^(k-j)*Binomial(j+3,j)*Binomial(n+4,k-j)*(j+2)^n for j in range(k+1))
    flatten([[A256890(n,k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)

A051189 Octo-factorial numbers.

Original entry on oeis.org

1, 8, 128, 3072, 98304, 3932160, 188743680, 10569646080, 676457349120, 48704929136640, 3896394330931200, 342882701121945600, 32916739307706777600, 3423340888001504870400, 383414179456168545484800
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_8)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001
Number of n X n monomial matrices whose nonzero entries are unit quaternions.
Number of ways of reassembling n slices of toast or of binding n square pages. - Donald S. McDonald, Sep 24 2005

Crossrefs

Shifted absolute values are column 1 of A051187.

Programs

  • Magma
    [8^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
    
  • Mathematica
    Table[n! 8^n,{n,0,20}] (* Harvey P. Dale, Aug 14 2021 *)
  • SageMath
    [8^n*factorial(n) for n in range(40)] # G. C. Greubel, Oct 21 2022

Formula

a(n) = 8*A034976(n) = Product_{k=1..n} 8*k, n >= 1; a(0) = 1.
a(n) = n!*8^n.
E.g.f.: 1/(1-8*x).
G.f.: 1/(1 - 8*x/(1 - 8*x/(1 - 16*x/(1 - 16*x/(1 - 24*x/(1 - 24*x/(1 - 32*x/(1 - 32*x/(1 - ... (continued fraction). - Philippe Deléham, Jan 07 2012
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/8).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/8). (End)

A034975 One seventh of octo-factorial numbers.

Original entry on oeis.org

1, 15, 345, 10695, 417105, 19603935, 1078216425, 67927634775, 4822862069025, 381006103452975, 33147531000408825, 3149015445038838375, 324348590839000352625, 36002693583129039141375, 4284320536392355657823625, 544108708121829168543600375, 73454675596446937753386050625
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (8*n-1)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
    
  • Mathematica
    Table[8^n*Pochhammer[7/8, n]/7, {n, 40}] (* G. C. Greubel, Oct 21 2022 *)
  • SageMath
    [8^n*rising_factorial(7/8,n)/7 for n in range(1,40)] # G. C. Greubel, Oct 21 2022

Formula

7*a(n) = (8*n-1)!^8 = Product_{j=1..n} (8*j-1) = (8*n)!/((2*n)!*2^(6*n)*3^2*5 * A045755(n)*A007696(n)*A034909(n)*A034911(n)*A034176(n)).
E.g.f.: (-1+(1-8*x)^(-7/8))/7.
G.f.: x/(1-15*x/(1-8*x/(1-23*x/(1-16*x/(1-31*x/(1-24*x/(1-39*x/(1-32*x/(1-... (continued fraction). - Philippe Deléham, Jan 07 2012
a(n) = (1/7) * 8^n * Pochhammer(n, 7/8). - G. C. Greubel, Oct 21 2022
From Amiram Eldar, Dec 20 2022: (Start)
a(n) = A049210(n)/7.
Sum_{n>=1} 1/a(n) = 7*(e/8)^(1/8)*(Gamma(7/8) - Gamma(7/8, 1/8)). (End)

A259056 a(n) gives the determinant of a bisymmetric n X n matrix involving the entries 1, 2, ..., A002620(n+1).

Original entry on oeis.org

1, -3, -16, 60, 384, -1680, -12288, 60480, 491520, -2661120, -23592960, 138378240, 1321205760, -8302694400, -84557168640, 564583219200, 6088116142080, -42908324659200, -487049291366400, 3604299271372800
Offset: 1

Views

Author

Wolfdieter Lang, Jul 07 2015

Keywords

Comments

The maximal number of distinct entries of an n X n bisymmetric matrix B_n is A002620(n+1) = ((n+1)/2)^2 if n is odd and = n*(n+2)/4 if n is even. See a comment and example under A002620.
Here the first A002620(n+1) positive numbers are used consecutively, that is B_n[i, j] = (i-1)*n - (i-1)^2 + j for j=i..N-(i-1) and i = 1..ceiling(n/2).
Conjecture: a(2*n-1) = (-1)^(n-1)*A034976(n), n >= 1.
For a(2*n)/3 see A259057(n), n >= 1 (assuming that a(2*n) is always divisible by 3).

Examples

			n = 1, B_1 [1], a(1) = det(B_1) = 1.
n = 2, B_2 = [[1,2],[2,1]], a(2) = det(B_2) = -3.
n = 3: B_3 = [[1,2,3],[2,4,2],[3,2,1]], a(3) = det(B_3) = -16
n = 4: B_4 = [[1,2,3,4],[2,5,6,3],[3,6,5,2],[4,3,2,1]], a(4) = det(B_4) = 60.
		

Crossrefs

Formula

Determinant of the above defined bisymmetric matrix B_n, n >= 1.

A259057 One-third of the even-indexed entries of A259056.

Original entry on oeis.org

-1, 20, -560, 20160, -887040, 46126080, -2767564800, 188194406400, -14302774886400, 1201433090457600, -110531844322099200, 11053184432209920000, -1193743918678671360000, 138474294566725877760000, -17170812526274008842240000
Offset: 1

Views

Author

Wolfdieter Lang, Jul 07 2015

Keywords

Comments

It is conjectured that this is an integer sequence.
For the odd-indexed entries of A259056 see
(-1)^(n-1)*A034976(n), n >= 1.

Crossrefs

Formula

a(n) = A259056(2*n)/3, n >= 1.
Showing 1-5 of 5 results.