A049209
a(n) = -Product_{k=0..n} (7*k-1); sept-factorial numbers.
Original entry on oeis.org
1, 6, 78, 1560, 42120, 1432080, 58715280, 2818333440, 155008339200, 9610517030400, 663125675097600, 50397551307417600, 4182996758515660800, 376469708266409472000, 36517561701841718784000, 3797826416991538753536000, 421558732286060801642496000
Offset: 0
Row sums of triangle
A051186 (scaled Stirling1 triangle).
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6), this sequence (m=7),
A049210 (m=8),
A049211 (m=9),
A049212 (m=10),
A254322 (m=11),
A346896 (m=12).
-
[ -&*[ (7*k-1): k in [0..n-1] ]: n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
-
CoefficientList[Series[(1-7*x)^(-6/7),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
With[{m=7}, Table[m^n*Pochhammer[(m-1)/m, n], {n, 0, 30}]] (* G. C. Greubel, Feb 16 2022 *)
-
m=7; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022
A049211
a(n) = Product_{k=1..n} (9*k - 1); 9-factorial numbers.
Original entry on oeis.org
1, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, 1270453824640, 101636305971200, 9045631231436800, 886471860680806400, 94852489092846284800, 11002888734770169036800, 1375361091846271129600000, 184298386307400331366400000, 26354669241958247385395200000
Offset: 0
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6),
A049209 (m=7),
A049210 (m=8), this sequence (m=9),
A049212 (m=10),
A254322 (m=11),
A346896 (m=12).
-
m:=9; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..20]]; // G. C. Greubel, Feb 08 2022
-
CoefficientList[Series[(1-9*x)^(-8/9),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
-
a(n) = prod(k=1, n, 9*k-1); \\ Michel Marcus, Jan 08 2015
-
m=9; [m^n*rising_factorial((m-1)/m, n) for n in (0..20)] # G. C. Greubel, Feb 08 2022
a(9) (originally given incorrectly as 1011636305971200) corrected by
Peter Bala, Feb 20 2015
a(16) corrected and incorrect MAGMA program removed by
Georg Fischer, May 10 2021
A049210
a(n) = -Product_{k=0..n} (8*k-1); octo-factorial numbers.
Original entry on oeis.org
1, 7, 105, 2415, 74865, 2919735, 137227545, 7547514975, 475493443425, 33760034483175, 2667042724170825, 232032717002861775, 22043108115271868625, 2270440135873002468375, 252018855081903273989625, 29990243754746489604765375, 3808760956852804179805202625
Offset: 0
Sequences of the form m^n*Pochhammer((m-1)/m, n):
A000007 (m=1),
A001147 (m=2),
A008544 (m=3),
A008545 (m=4),
A008546 (m=5),
A008543 (m=6),
A049209 (m=7), this sequence (m=8),
A049211 (m=9),
A049212 (m=10),
A254322 (m=11),
A346896 (m=12).
-
m:=8; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..30]]; // G. C. Greubel, Feb 16 2022
-
FoldList[Times,1,8*Range[20]-1] (* Harvey P. Dale, Aug 03 2014 *)
CoefficientList[Series[(1-8*x)^(-7/8),{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Jan 28 2015 *)
-
a(n) = -prod(k=0, n, 8*k-1); \\ Michel Marcus, Jan 08 2015
-
m=8; [m^n*rising_factorial((m-1)/m, n) for n in (0..30)] # G. C. Greubel, Feb 16 2022
A254322
Expansion of e.g.f.: (1-11*x)^(-10/11).
Original entry on oeis.org
1, 10, 210, 6720, 288960, 15603840, 1014249600, 77082969600, 6706218355200, 657209398809600, 71635824470246400, 8596298936429568000, 1126115160672273408000, 159908352815462823936000, 24465977980765812062208000, 4012420388845593178202112000
Offset: 0
Sequences of the form k^n*Pochhammer((k-1)/k, n):
A000007 (k=1),
A001147 (k=2),
A008544 (k=3),
A008545 (k=4),
A008546 (k=5),
A008543 (k=6),
A049209 (k=7),
A049210 (k=8),
A049211 (k=9),
A049212 (k=10), this sequence (k=11),
A346896 (k=12).
-
m=11; [Round(m^n*Gamma(n +(m-1)/m)/Gamma((m-1)/m)): n in [0..20]]; // G. C. Greubel, Feb 08 2022
-
CoefficientList[Series[(1-11*x)^(-10/11), {x, 0, 20}], x] * Range[0, 20]!
FullSimplify[Table[11^n * Gamma[n+10/11] / Gamma[10/11], {n, 0, 18}]]
-
m=11; [m^n*rising_factorial((m-1)/m, n) for n in (0..20)] # G. C. Greubel, Feb 08 2022
A354394
Expansion of e.g.f. 1/(1 + (exp(x) - 1)^5 / 120).
Original entry on oeis.org
1, 0, 0, 0, 0, -1, -15, -140, -1050, -6951, -42273, -232870, -949740, 2401399, 149618469, 2979464124, 47639256210, 683529622229, 9045426379611, 109599657976942, 1148191101672384, 8033814119097459, -50834295574038207, -3977581842278623216, -119536187842156328034
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+(exp(x)-1)^5/120)))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-sum(j=1, i, binomial(i, j)*stirling(j, 5, 2)*v[i-j+1])); v;
-
a(n) = sum(k=0, n\5, (5*k)!*stirling(n, 5*k, 2)/(-120)^k);
Showing 1-5 of 5 results.
Comments