A011801
Triangle read by rows, the inverse Bell transform of n!*binomial(4,n) (without column 0).
Original entry on oeis.org
1, 4, 1, 36, 12, 1, 504, 192, 24, 1, 9576, 3960, 600, 40, 1, 229824, 100656, 17160, 1440, 60, 1, 6664896, 3048192, 563976, 54600, 2940, 84, 1, 226606464, 107255232, 21095424, 2256576, 142800, 5376, 112, 1, 8837652096, 4302305280, 887785920, 102332160, 7254576, 325584, 9072, 144, 1
Offset: 1
Triangle starts:
1;
4, 1;
36, 12, 1;
504, 192, 24, 1;
9576, 3960, 600, 40, 1;
229824, 100656, 17160, 1440, 60, 1;
6664896, 3048192, 563976, 54600, 2940, 84, 1;
226606464, 107255232, 21095424, 2256576, 142800, 5376, 112, 1;
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Peter Luschny, The Bell transform
- Index entries for sequences related to Bessel functions or polynomials
-
function T(n,k) // T = A011801
if k eq 0 then return 0;
elif k eq n then return 1;
else return (5*(n-1)-k)*T(n-1,k) + T(n-1,k-1);
end if;
end function;
[T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2023
-
(* First program *)
T[n_, m_] /; n>=m>=1:= T[n, m]= (5*(n-1)-m)*T[n-1, m] + T[n-1, m-1]; T[n_, m_] /; nJean-François Alcover, Jun 20 2018 *)
(* Second program *)
rows = 10;
b[n_, m_]:= BellY[n, m, Table[k! Binomial[4, k], {k, 0, rows}]];
T= Table[b[n, m], {n,rows}, {m,rows}]//Inverse//Abs;
A011801= Table[T[[n, m]], {n,rows}, {m,n}]//Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
# uses[inverse_bell_matrix from A264428]
# Adds 1,0,0,0, ... as column 0 at the left side of the triangle.
inverse_bell_matrix(lambda n: factorial(n)*binomial(4, n), 8) # Peter Luschny, Jan 16 2016
A157404
A partition product of Stirling_2 type [parameter k = 4] with biggest-part statistic (triangle read by rows).
Original entry on oeis.org
1, 1, 4, 1, 12, 36, 1, 72, 144, 504, 1, 280, 1800, 2520, 9576, 1, 1740, 22320, 37800, 57456, 229824, 1, 8484, 182700, 864360, 1005480, 1608768, 6664896, 1, 57232, 2380896, 16546320, 26276544, 32175360, 53319168, 226606464
Offset: 1
Original entry on oeis.org
1, 3, 17, 145, 1661, 23931, 415773, 8460257, 197360985, 5192853011, 152137882601, 4911873672113, 173268075672277, 6630323916472075, 273555262963272501, 12105084133976359361, 571897644855277242673, 28731255563712689630627, 1529450942687399074134465
Offset: 1
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-3*x)^(1/3)) - 1 ))); // G. C. Greubel, Oct 02 2023
-
a[1]=1; a[n_]:= 1 +(n-1)!*Sum[Binomial[k, n-m-k]*Binomial[k+n-1,n-1]*(-1/3)^(n-m-k)/(m-1)!, {m,n}, {k,n-m}]; Table[a[n], {n,20}] (* Jean-François Alcover, Jul 05 2013, after Vladimir Kruchinin *)
Rest@With[{m=30}, CoefficientList[Series[Exp[1-Surd[1-3*x,3]] -1, {x, 0,m}], x]*Range[0,m]!] (* G. C. Greubel, Oct 02 2023 *)
-
a(n):=if n=1 then 1 else (n-1)!*sum(sum(binomial(k,n-m-k)* (-1/3)^(n-m-k)*binomial(k+n-1,n-1),k,1,n-m)/(m-1)!,m,1,n)+1; /* Vladimir Kruchinin, Aug 08 2010 */
-
def A015735_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(1-(1-3*x)^(1/3)) -1 ).egf_to_ogf().list()
a=A015735_list(40); a[1:] # G. C. Greubel, Oct 02 2023
Original entry on oeis.org
1, 4, 31, 361, 5626, 109951, 2585269, 71066626, 2236441141, 79289379361, 3127129674736, 135802922499949, 6439320471558781, 331026965612789356, 18338413238239145731, 1089132347371148170381, 69033182553940825258594, 4651256393180943757676371
Offset: 1
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-4*x)^(1/4)) -1 ))); // G. C. Greubel, Oct 02 2023
-
a[n_, m_] /; (n>= m>= 1):= a[n, m]= (4*(n-1)-m)*a[n-1,m] + a[n-1,m-1]; a[n_, m_] /; n,0]= 0; a[1,1] = 1; a[n]:= Sum[a[n,m], {m, n}]; Table[a[n], {n,20}] (* Jean-François Alcover, Feb 28 2013 *)
With[{nn=20},CoefficientList[Series[Exp[1-Surd[1-4x,4]]-1,{x,0,nn}],x] Range[0,nn]!]//Rest (* Harvey P. Dale, Apr 20 2016 *)
-
a(n):=((n-1)!*sum((sum(binomial(n+k-1,n-1)*sum(binomial(j,n-m-3*k+2*j)*binomial(k,j)*3^(-n+m+3*k-j)*2^(n-m-5*k+3*j)*(-1)^(n-m-k),j,0,k),k,1,n-m))/(m-1)!,m,1,n-1))+1; /* Vladimir Kruchinin, Oct 18 2011 */
-
def A016036_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(1-(1-4*x)^(1/4)) -1 ).egf_to_ogf().list()
a=A016036_list(40); a[1:] # G. C. Greubel, Oct 02 2023
Original entry on oeis.org
1, 6, 71, 1261, 29906, 887751, 31657851, 1318279586, 62783681421, 3365947782611, 200610405843926, 13157941480889921, 941848076798467801, 73060842413607398806, 6105266987293752470991, 546770299628690541571901, 52244284936267317229542466, 5305131708827069245129523591
Offset: 1
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(1-(1-6*x)^(1/6)) -1 ))); // G. C. Greubel, Oct 03 2023
-
With[{nn=20},Rest[CoefficientList[Series[Exp[1-(1-6x)^(1/6)]-1,{x,0,nn}], x]Range[0,nn]!]] (* Harvey P. Dale, Feb 02 2012 *)
-
def A028844_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(1-(1-6*x)^(1/6)) -1 ).egf_to_ogf().list()
a=A028844_list(40); a[1:] # G. C. Greubel, Oct 03 2023
A380310
Expansion of e.g.f. exp( 1 - 1/(1-5*x)^(1/5) ).
Original entry on oeis.org
1, -1, -5, -49, -719, -14077, -344909, -10152829, -349045535, -13727327833, -607873987637, -29931556660105, -1622308999459631, -95982568510668373, -6155361624644676989, -425321834949751148053, -31502433469012320013631, -2489898822489054343250737, -209178052238110675644666341
Offset: 0
A380307
Expansion of e.g.f. exp( (1+5*x)^(1/5) - 1 ).
Original entry on oeis.org
1, 1, -3, 25, -335, 6177, -144947, 4128937, -138327615, 5327738497, -231899041475, 11255588133945, -602683483719503, 35288931375293857, -2242963870471014963, 153791777744471484745, -11314787069889491407103, 889087243145447511507969, -74312052321224600661026051
Offset: 0
Showing 1-7 of 7 results.
Comments