A143168
Third column of triangle A000369: |S2(-3; n+3, 3)|.
Original entry on oeis.org
1, 18, 345, 7650, 196245, 5755050, 190482705, 7034400450, 286988226525, 12826061498250, 623403611055225, 32747785180560450, 1849179329801929125, 111713055889014830250, 7190273917194645902625, 491244630824362410245250, 35508203161436371983742125
Offset: 0
A143170
Fifth column of triangle A000369: |S2(-3;n+5,5)|.
Original entry on oeis.org
1, 45, 1680, 62790, 2471175, 104085135, 4712781150, 229345716600, 11970744110325, 668241679730625, 39773331191493900, 2516317288024790250, 168723807382851595875, 11956978164372003637875, 893260022082269487896250, 70178395183380972653665500
Offset: 0
A145562
Second column (m=2) of triangle A049029 (S2(5)).
Original entry on oeis.org
1, 15, 255, 5175, 123795, 3427515, 108046575, 3824996175, 150346471275, 6499426608675, 306553491419175, 15668768604864375, 862827112324051875, 50929793720847916875, 3208139019437586609375, 214817175616326677769375, 15237402314816854944646875
Offset: 0
-
FullSimplify@Table[(-4)^n(8Sqrt[Pi]/Gamma[-3/2-n]-5Gamma[-5/4]/Gamma[-5/4-n]),{n, 0, 20}] (* Benedict W. J. Irwin, Apr 06 2017 *)
-
x='x+O('x^50); Vec(serlaplace((6 - 5*(1-4*x)^(1/4))/(1 -4*x)^(5/2))) \\ G. C. Greubel, May 25 2017
A383196
Expansion of e.g.f. (1/(1 - 3*x)^(1/3) - 1)^3 / 6.
Original entry on oeis.org
0, 0, 0, 1, 24, 520, 11880, 295960, 8090880, 242280640, 7912262400, 280384720000, 10727852889600, 441104638374400, 19407654326860800, 910140650683264000, 45332366929833984000, 2390437704451084288000, 133060566042200788992000, 7797805996570952986624000
Offset: 0
-
a(n) = sum(k=3, n, 3^(n-k)*abs(stirling(n, k, 1))*stirling(k, 3, 2));
Showing 1-4 of 4 results.