cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A001498 Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 15, 15, 1, 10, 45, 105, 105, 1, 15, 105, 420, 945, 945, 1, 21, 210, 1260, 4725, 10395, 10395, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 1, 45, 990, 13860, 135135, 945945, 4729725, 16216200, 34459425, 34459425
Offset: 0

Views

Author

Keywords

Comments

The row polynomials with exponents in increasing order (e.g., third row: 1+3x+3x^2) are Grosswald's y_{n}(x) polynomials, p. 18, Eq. (7).
Also called Bessel numbers of first kind.
The triangle a(n,k) has factorization [C(n,k)][C(k,n-k)]Diag((2n-1)!!) The triangle a(n-k,k) is A100861, which gives coefficients of scaled Hermite polynomials. - Paul Barry, May 21 2005
Related to k-matchings of the complete graph K_n by a(n,k)=A100861(n+k,k). Related to the Morgan-Voyce polynomials by a(n,k)=(2k-1)!!*A085478(n,k). - Paul Barry, Aug 17 2005
Related to Hermite polynomials by a(n,k)=(-1)^k*A060821(n+k, n-k)/2^n. - Paul Barry, Aug 28 2005
The row polynomials, the Bessel polynomials y(n,x):=Sum_{m=0..n} (a(n,m)*x^m) (called y_{n}(x) in the Grosswald reference) satisfy (x^2)*(d^2/dx^2)y(n,x) + 2*(x+1)*(d/dx)y(n,x) - n*(n+1)*y(n,x) = 0.
a(n-1, m-1), n >= m >= 1, enumerates unordered n-vertex forests composed of m plane (aka ordered) increasing (rooted) trees. Proof from the e.g.f. of the first column Y(z):=1-sqrt(1-2*z) (offset 1) and the Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0)=0, with out-degree o.g.f. phi(w)=1/(1-w). See their remark on p. 28 on plane recursive trees. For m=1 see the D. Callan comment on A001147 from Oct 26 2006. - Wolfdieter Lang, Sep 14 2007
The asymptotic expansions of the higher order exponential integrals E(x,m,n), see A163931 for information, lead to the Bessel numbers of the first kind in an intriguing way. For the first four values of m these asymptotic expansions lead to the triangles A130534 (m=1), A028421 (m=2), A163932 (m=3) and A163934 (m=4). The o.g.f.s. of the right hand columns of these triangles in their turn lead to the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4). The row sums of these four triangles lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four right hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next four right hand columns of A001498. So one by one all columns of the triangle of coefficients of Bessel polynomials appear. - Johannes W. Meijer, Oct 07 2009
a(n,k) also appear as coefficients of (n+1)st degree of the differential operator D:=1/t d/dt, namely D^{n+1}= Sum_{k=0..n} a(n,k) (-1)^{n-k} t^{1-(n+k)} (d^{n+1-k}/dt^{n+1-k}. - Leonid Bedratyuk, Aug 06 2010
a(n-1,k) are the coefficients when expanding (xI)^n in terms of powers of I. Let I(f)(x) := Integral_{a..x} f(t) dt, and (xI)^n := x Integral_{a..x} [ x_{n-1} Integral_{a..x_{n-1}} [ x_{n-2} Integral_{a..x_{n-2}} ... [ x_1 Integral_{a..x_1} f(t) dt ] dx_1 ] .. dx_{n-2} ] dx_{n-1}. Then: (xI)^n = Sum_{k=0..n-1} (-1)^k * a(n-1,k) * x^(n-k) * I^(n+k)(f)(x) where I^(n) denotes iterated integration. - Abdelhay Benmoussa, Apr 11 2025

Examples

			The triangle a(n, k), n >= 0, k = 0..n, begins:
  1
  1  1
  1  3   3
  1  6  15    15
  1 10  45   105    105
  1 15 105   420    945    945
  1 21 210  1260   4725  10395   10395
  1 28 378  3150  17325  62370  135135   135135
  1 36 630  6930  51975 270270  945945  2027025  2027025
  1 45 990 13860 135135 945945 4729725 16216200 34459425 34459425
  ...
And the first few Bessel polynomials are:
  y_0(x) = 1,
  y_1(x) = x + 1,
  y_2(x) = 3*x^2 + 3*x + 1,
  y_3(x) = 15*x^3 + 15*x^2 + 6*x + 1,
  y_4(x) = 105*x^4 + 105*x^3 + 45*x^2 + 10*x + 1,
  y_5(x) = 945*x^5 + 945*x^4 + 420*x^3 + 105*x^2 + 15*x + 1,
  ...
Tree counting: a(2,1)=3 for the unordered forest of m=2 plane increasing trees with n=3 vertices, namely one tree with one vertex (root) and another tree with two vertices (a root and a leaf), labeled increasingly as (1, 23), (2,13) and (3,12). - _Wolfdieter Lang_, Sep 14 2007
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Cf. A001497 (same triangle but rows read in reverse order). Other versions of this same triangle are given in A144331, A144299, A111924 and A100861.
Columns from left edge include A000217, A050534.
Columns 1-6 from right edge are A001147, A001879, A000457, A001880, A001881, A038121.
Bessel polynomials evaluated at certain x are A001515 (x=1, row sums), A000806 (x=-1), A001517 (x=2), A002119 (x=-2), A001518 (x=3), A065923 (x=-3), A065919 (x=4). Cf. A043301, A003215.
Cf. A245066 (central terms). A113025 (y_n(2*x)).

Programs

  • Haskell
    a001498 n k = a001498_tabl !! n !! k
    a001498_row n = a001498_tabl !! n
    a001498_tabl = map reverse a001497_tabl
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    /* As triangle: */ [[Factorial(n+k)/(2^k*Factorial(n-k)*Factorial(k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
  • Maple
    Bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end; # explicit Bessel polynomials
    Bessel := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*Bessel(n-1)+Bessel(n-2); fi; end; # recurrence for Bessel polynomials
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
    f := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*f(n-1)+f(n-2); fi; end;
    # Alternative:
    T := (n,k) -> pochhammer(n+1,k)*binomial(n,k)/2^k:
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 11 2018
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
    else (n - k + 1)* T(n, k - 1) + T(n - 1, k) fi fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Oct 02 2023
  • Mathematica
    max=50; Flatten[Table[(n+k)!/(2^k*(n-k)!*k!), {n, 0, Sqrt[2 max]//Ceiling}, {k, 0, n}]][[1 ;; max]] (* Jean-François Alcover, Mar 20 2011 *)
  • PARI
    {T(n,k)=if(k<0||k>n, 0, binomial(n, k)*(n+k)!/2^k/n!)} /* Michael Somos, Oct 03 2006 */
    
  • PARI
    A001497_ser(N,t='t) = {
      my(x='x+O('x^(N+2)));
      serlaplace(deriv(exp((1-sqrt(1-2*t*x))/t),'x));
    };
    concat(apply(Vecrev, Vec(A001497_ser(9)))) \\ Gheorghe Coserea, Dec 27 2017
    

Formula

a(n, k) = (n+k)!/(2^k*(n-k)!*k!) (see Grosswald and Riordan). - Ralf Stephan, Apr 20 2004
a(n, 0)=1; a(0, k)=0, k > 0; a(n, k) = a(n-1, k) + (n-k+1) * a(n, k-1) = a(n-1, k) + (n+k-1) * a(n-1, k-1). - Len Smiley
a(n, m) = A001497(n, n-m) = A001147(m)*binomial(n+m, 2*m) for n >= m >= 0, otherwise 0.
G.f. for m-th column: (A001147(m)*x^m)/(1-x)^(2*m+1), m >= 0, where A001147(m) = double factorials (from explicit a(n, m) form).
Row polynomials y_n(x) are given by D^(n+1)(exp(t)) evaluated at t = 0, where D is the operator 1/(1-t*x)*d/dt. - Peter Bala, Nov 25 2011
G.f.: conjecture: T(0)/(1-x), where T(k) = 1 - x*y*(k+1)/(x*y*(k+1) - (1-x)^2/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
Recurrence from Grosswald, p. 18, eq. (5), for the row polynomials: y_n(x) = (2*n-1)*x*y_{n-1} + y_{n-2}(x), y_{-1}(x) = 1 = y_{0} = 1, n >= 1. This becomes, for n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = (2*n-1)*a(n-1, k-1) + a(n-2, k). Compare with the above given recurrences. - Wolfdieter Lang, May 11 2018
T(n, k) = Pochhammer(n+1,k)*binomial(n,k)/2^k = A113025(n,k)/2^k. - Peter Luschny, May 11 2018
a(n, k) = Sum_{i=0..min(n-1, k)} (n-i)(k-i) * a(n-1, i) where x(n) = x*(x-1)*...*(x-n+1) is the falling factorial, this equality follows directly from the operational formula we wrote in Apr 11 2025.- Abdelhay Benmoussa, May 18 2025

A001517 Bessel polynomials y_n(x) (see A001498) evaluated at 2.

Original entry on oeis.org

1, 3, 19, 193, 2721, 49171, 1084483, 28245729, 848456353, 28875761731, 1098127402131, 46150226651233, 2124008553358849, 106246577894593683, 5739439214861417731, 332993721039856822081, 20651350143685984386753
Offset: 0

Views

Author

Keywords

Comments

Numerators of successive convergents to e using continued fraction 1 + 2/(1 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + 1/(22 + 1/26 + ...)))))).
Number of ways to use the elements of {1,...,k}, n <= k <= 2n, once each to form a collection of n lists, each having length 1 or 2. - Bob Proctor, Apr 18 2005, Jun 26 2006

References

  • L. Euler, 1737.
  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 6th ed., Section 0.126, p. 2.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A080893.
a(n) = A099022(n)/n!.
Partial sums: A105747.
Replace "lists" with "sets" in comment: A001515.

Programs

  • Maple
    A:= gfun:-rectoproc({a(n) = (4*n-2)*a(n-1) + a(n-2),a(0)=1,a(1)=3},a(n),remember):
    map(A, [$0..20]); # Robert Israel, Jul 22 2015
    f:=proc(n) option remember; if n = 0 then 1 elif n=1 then 3 else f(n-2)+(4*n-2)*f(n-1); fi; end;
    [seq(f(n), n=0..20)]; # N. J. A. Sloane, May 09 2016
    seq(simplify(KummerU(-n, -2*n, 1)), n = 0..16); # Peter Luschny, May 10 2022
  • Mathematica
    Table[(2k)! Hypergeometric1F1[-k, -2k, 1]/k!, {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
  • PARI
    a(n)=sum(k=0,n,(n+k)!/k!/(n-k)!)
    
  • Sage
    A001517 = lambda n: hypergeometric([-n, n+1], [], -1)
    [simplify(A001517(n)) for n in (0..16)] # Peter Luschny, Oct 17 2014

Formula

a(n) = Sum_{k=0..n} (n+k)!/(k!*(n-k)!) = (e/Pi)^(1/2) K_{n+1/2}(1/2).
D-finite with recurrence a(n) = (4*n-2)*a(n-1) + a(n-2), n >= 2.
a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n+k)*binomial(n,k)*A000522(n+k). - Vladeta Jovovic, Sep 30 2006
E.g.f. (for offset 1): exp(x*c(x)), where c(x)=(1-sqrt(1-4*x))/(2*x) (cf. A000108). - Vladimir Kruchinin, Aug 10 2010
G.f.: 1/Q(0), where Q(k) = 1 - x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = (1/n!)*Integral_{x>=0} (x*(1 + x))^n*exp(-x) dx. Expansion of exp(x) in powers of y = x*(1 - x): exp(x) = 1 + y + 3*y^2/2! + 19*y^3/3! + 193*y^4/4! + 2721*y^5/5! + .... - Peter Bala, Dec 15 2013
a(n) = exp(1/2) / sqrt(Pi) * BesselK(n+1/2, 1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) ~ 2^(2*n+1/2) * n^n / exp(n-1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) = hypergeom([-n, n+1], [], -1). - Peter Luschny, Oct 17 2014
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 4^n * hypergeometric1f1(-n; -2*n; 1).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 4*t/(1-t)^2). (End)
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*k!. - Ilya Gutkovskiy, Nov 24 2017
a(n) = KummerU(-n, -2*n, 1). - Peter Luschny, May 10 2022

Extensions

More terms from Vladeta Jovovic, Apr 03 2000
Additional comments from Michael Somos, Jul 15 2002

A001514 Bessel polynomial {y_n}'(1).

Original entry on oeis.org

0, 1, 9, 81, 835, 9990, 137466, 2148139, 37662381, 733015845, 15693217705, 366695853876, 9289111077324, 253623142901401, 7425873460633005, 232122372003909045, 7715943399320562331, 271796943164015920914, 10114041937573463433966
Offset: 0

Views

Author

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    (As in A001497 define:) f := proc(n) option remember; if n <=1 then (1+x)^n else expand((2*n-1)*x*f(n-1)+f(n-2)); fi; end;
    [seq( subs(x=1,diff(f(n),x)),n=0..60)];
    f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f2(n),n=0..60)]; # uses a different offset
  • Mathematica
    Table[Sum[(n+k+1)!/((n-k-1)!*k!*2^(k+1)), {k,0,n-1}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
    Join[{0}, Table[n*Pochhammer[1/2, n]*2^n* Hypergeometric1F1[1 - n, -2*n, 2], {n,1,50}]] (* G. C. Greubel, Aug 14 2017 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n-1, (n+k+1)!/((n-k-1)!*k!*2^(k+1))), ", ")) \\ G. C. Greubel, Aug 14 2017

Formula

a(n) = (1/2) * Sum_{k=0..n} (n+k+2)!/((n-k)!*k!*2^k) (with a different offset).
D-finite with recurrence: (n-1)^2 * a(n) = (2*n-1)*(n^2 - n + 1)*a(n-1) + n^2*a(n-2). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ 2^(n+1/2) * n^(n+1) / exp(n-1). - Vaclav Kotesovec, Jul 22 2015
a(n) = n*2^n*(1/2){n}*hypergeometric1f1(1-n, -2*n, 2), where (a){n} is the Pochhammer symbol. - G. C. Greubel, Aug 14 2017
From G. C. Greubel, Aug 16 2017: (Start)
G.f.: (1/(1-t))*hypergeometric2f0(2, 3/2; -; 2*t/(1-t)^2).
E.g.f.: (1 - 2*x)^(-3/2)*((1 - x)*sqrt(1 - 2*x) + (3*x - 1))*exp((1 - sqrt(1 - 2*x))). (End)

A001880 Coefficients of Bessel polynomials y_n (x).

Original entry on oeis.org

1, 15, 210, 3150, 51975, 945945, 18918900, 413513100, 9820936125, 252070693875, 6957151150950, 205552193096250, 6474894082531875, 216659917377028125, 7675951358500425000, 287080580807915895000, 11303797869311688365625, 467445288360359818884375
Offset: 4

Views

Author

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A001518.
Column 4 of triangle A001497.
Equals the second right hand column of the triangles A094665 and A083061.
Other right hand columns are A001147, A160470, A160471 and A160472.

Programs

  • Mathematica
    nn = 25; t = Range[0, nn]! CoefficientList[Series[x (1 + x/2)/(1 - 2 x)^(7/2), {x, 0, nn}], x]; Drop[t, 1] (* T. D. Noe, Aug 10 2012 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(x*(1 + x/2)/(1 - 2*x)^(7/2))) \\ G. C. Greubel, Aug 13 2017

Formula

E.g.f.: x*(1 + x/2)/(1 - 2*x)^(7/2); or, if shifted, (1+ 6x+ 3x^2/2!) / (1-2x)^(9/2).
a(n) = (2*n-4)!/(4!*(n-4)!*2^(n-4)).
(n-4)*a(n) = (n-2)*(2*n-5)*a(n-1) for n = 5, 6, .. , with a(4) = 1. - Johannes W. Meijer, May 24 2009
G.f.: x^4*2F0(5/2,3;;2x). - R. J. Mathar, Aug 08 2015

A001516 Bessel polynomial {y_n}''(1).

Original entry on oeis.org

0, 0, 6, 120, 1980, 32970, 584430, 11204676, 233098740, 5254404210, 127921380840, 3350718545460, 94062457204716, 2819367702529560, 89912640142178490, 3040986592542420060, 108752084073199561140, 4101112025363285051526
Offset: 0

Views

Author

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    (As in A001497 define:) f := proc(n) option remember; if n <=1 then (1+x)^n else expand((2*n-1)*x*f(n-1)+f(n-2)); fi; end;
    [seq( subs(x=1,diff(f(n),x$2)),n=0..60)];
  • Mathematica
    Table[Sum[(n+k+2)!/(2^(k+2)*(n-k-2)!*k!), {k,0,n-2}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
    Join[{0, 0}, Table[n*(n - 1)*Pochhammer[1/2, n]*2^n* Hypergeometric1F1[2 - n, -2*n, 2], {n,2,50}]] (* G. C. Greubel, Aug 14 2017 *)
  • PARI
    for(n=0,20, print1(sum(k=0,n-2, (n+k+2)!/(2^(k+2)*(n-k-2)!*k!)), ", ")) \\ G. C. Greubel, Aug 14 2017

Formula

G.f.: 6*x^2*(1-x)^(-5)*hypergeom([5/2,3],[],2*x/(x-1)^2). - Mark van Hoeij, Nov 07 2011
D-finite with recurrence: (n-2)*(n-1)*a(n) = (2*n - 1)*(n^2 - n + 2)*a(n-1) + n*(n+1)*a(n-2). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ 2^(n+1/2) * n^(n+2) / exp(n-1). - Vaclav Kotesovec, Jul 22 2015
a(n) = n*(n - 1)*(1/2){n}*2^n* hypergeometric1F1(2 - n, -2*n, 2), where (a){n} is the Pochhammer symbol. - G. C. Greubel, Aug 14 2017
E.g.f.: (-1)*(1 - 2*x)^(-5/2)*((4 - 14*x + 9*x^2)*sqrt(1 - 2*x) + (2*x^3 - 24*x^2 + 18*x - 4))*exp((1 - sqrt(1 - 2*x))). - G. C. Greubel, Aug 16 2017

A001881 Coefficients of Bessel polynomials y_n (x).

Original entry on oeis.org

1, 21, 378, 6930, 135135, 2837835, 64324260, 1571349780, 41247931725, 1159525191825, 34785755754750, 1109981842719750, 37554385678684875, 1343291487737574375, 50661278966102805000, 2009564065655411265000, 83648104232906493905625, 3646073249210806587298125
Offset: 5

Views

Author

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A001518.
(1/4) the coefficient of x^2 of polynomials in A098503.
Column 5 of triangle A001497.
Third column (m=2) of Laguerre-Sonin a=1/2 triangle A130757.

Programs

  • Magma
    [Factorial(2*n-5)/(120*Factorial(n-5)*2^(n-5) ): n in [5..30]]; // Vincenzo Librandi, Aug 14 2017
  • Mathematica
    With[{nn = 50}, CoefficientList[Series[x*(1 + 3*x/2)/(1 - 2*x)^(9/2), {x, 0, nn}], x]*Range[0, nn]!] (* G. C. Greubel, Aug 13 2017 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(x*(1 + 3*x/2)/(1 - 2*x)^(9/2))) \\ G. C. Greubel, Aug 13 2017
    

Formula

a(n) = (2n-5)!/( 5!*(n-5)!*2^(n-5) ).
a(n) = binomial(n-3,2)*(2*n-5)!!/5!!, n >= 5, with (2*n-5)!! = A001147(n-2).
E.g.f.: x*(1 + 3*x/2)/(1 - 2*x)^(9/2), with offset 1. - G. C. Greubel, Aug 13 2017
G.f.: t^5 * hypergeometric2F0(3, 7/2; -; 2*t) = t^5 + 21*t^6 + .... - G. C. Greubel, Aug 16 2017

A065919 Bessel polynomial y_n(4).

Original entry on oeis.org

1, 5, 61, 1225, 34361, 1238221, 54516085, 2836074641, 170218994545, 11577727703701, 880077524475821, 73938089783672665, 6803184337622361001, 680392371852019772765, 73489179344355757819621, 8525425196317119926848801, 1057226213522667226687070945
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

Comments

Main diagonal of A143411. - Peter Bala, Aug 14 2008

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Cf. A143411 (main diagonal), A143412.
Polynomial coefficients are in A001498.

Programs

  • Magma
    A065919:= func< n | (&+[Binomial(n,k)*Factorial(n+k)*2^k/Factorial(n): k in [0..n]]) >;
    [A065919(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    seq(simplify(2^n*KummerU(-n,-2*n,1/2)), n=0..16); # Peter Luschny, May 10 2022
  • Mathematica
    Table[Sum[(n+k)!*2^k/((n-k)!*k!), {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
  • PARI
    for (n=0, 100, if (n>1, a=4*(2*n - 1)*a1 + a2; a2=a1; a1=a, if (n, a=a1=5, a=a2=1)); write("b065919.txt", n, " ", a) ) \\ Harry J. Smith, Nov 04 2009
    
  • PARI
    a(n) = sum(k=0,n, (n+k)!*2^k/((n-k)!*k!) ); \\ Joerg Arndt, May 17 2013
    
  • SageMath
    def A065919(n): return sum(binomial(n,k)*factorial(n+k)*2^k/factorial(n) for k in range(n+1))
    [A065919(n) for n in range(31)] # G. C. Greubel, Oct 05 2023

Formula

y_n(x) = Sum_{k=0..n} (n+k)!*(x/2)^k/((n-k)!*k!).
From Peter Bala, Aug 14 2008: (Start)
Recurrence relation: a(0) = 1, a(1) = 5, a(n) = 4*(2*n-1)*a(n-1) + a(n-2) for n >= 2. Sequence A143412(n) satisfies the same recurrence relation.
1/sqrt(e) = 1 - 2*Sum_{n = 0..inf} (-1)^n/(a(n)*a(n+1)) = 1 - 2*( 1/(1*5) - 1/(5*61) + 1/(61*1225) - ... ). (End)
G.f.: 1/Q(0), where Q(k)= 1 - x - 4*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = exp(1/4)/sqrt(2*Pi)*BesselK(n+1/2,1/4). - Gerry Martens, Jul 22 2015
a(n) ~ 2^(3*n+1/2) * n^n / exp(n-1/4). - Vaclav Kotesovec, Jul 22 2015
From Peter Bala, Apr 12 2017: (Start)
a(n) = 1/n!*Integral_{x = 0..inf} x^n*(1 + 2*x)^n dx.
E.g.f.: d/dx( exp(x*c(2*x)) ) = 1 + 5*x + 61*x^2/2! + 1225*x^3/3! + ..., where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
G.f.: (1/(1-x))*hypergeometric2f0(1,1/2; - ; 8*x/(1-x)^2). - G. C. Greubel, Aug 16 2017
a(n) = 2^n*KummerU(-n, -2*n, 1/2). - Peter Luschny, May 10 2022

A065944 Bessel polynomial {y_n}''(-1).

Original entry on oeis.org

0, 0, 6, -60, 720, -9870, 153510, -2679264, 51934680, -1107917910, 25807660560, -651977992380, 17758547202396, -518856566089680, 16188283372489410, -537210169663283760, 18894951642157260480, -702160022681408982114
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Programs

  • GAP
    f:=Factorial;; Concatenation([0,0], List([2..20], n-> Sum([0..n-2], k-> (-1)^k*f(n+k+2)/(2^(k+2)*f(n-k-2)*f(k)) ))); # G. C. Greubel, Jul 10 2019
  • Magma
    f:=Factorial; [0,0] cat [(&+[((-1)^k*f(n+k+2)/(2^(k+2)*f(n-k-2) *f(k))): k in [0..n-2]]): n in [2..20]]; // G. C. Greubel, Jul 10 2019
    
  • Mathematica
    Table[Sum[(n+k+2)!*(-1)^k/(2^(k+2)*(n-k-2)!*k!), {k,0,n-2}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
    Join[{0, 0}, Table[4*n*(n-1)*Pochhammer[1/2, n]*(-2)^(n-2)* Hypergeometric1F1[2-n, -2*n, -2], {n, 2,20}]] (* G. C. Greubel, Aug 14 2017 *)
  • PARI
    for(n=0,20, print1(sum(k=0,n-2, (n+k+2)!*(-1)^k/(2^(k+2)*(n-k-2)!*k!)), ", ")) \\ G. C. Greubel, Aug 14 2017
    
  • Sage
    f=factorial; [0,0]+[sum((-1)^k*f(n+k+2)/(2^(k+2)*f(n-k-2)*f(k)) for k in (0..n-2)) for n in (2..20)] # G. C. Greubel, Jul 10 2019
    

Formula

Recurrence: (n-2)*(n-1)*a(n) = -(n-2)*(n+1)*(2*n-1)*a(n-1) + n*(n+1)*a(n-2). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ (-1)^n * 2^(n+1/2) * n^(n+2) / exp(n+1). - Vaclav Kotesovec, Jul 22 2015
From G. C. Greubel, Aug 14 2017: (Start)
a(n) = 2*n*(n-1)*(1/2){n}*(-2)^(n - 1)* hypergeometric1f1(2 - n, -2*n, -2), where (a){n} is the Pochhammer symbol.
E.g.f.: (1 + 2*x)^(-5/2)*(x*(x + 2)*sqrt(1 + 2*x) + (2*x^3 - 2*x)) * exp(-1 + sqrt(1 + 2*x)). (End)
G.f.: (6*x^2/(1-x)^5)*hypergeometric2f0(3,5/2; - ; -2*x/(1-x)^2). - G. C. Greubel, Aug 16 2017

A065945 Bessel polynomial {y_n}''(2).

Original entry on oeis.org

0, 0, 6, 210, 6390, 201810, 6895140, 257335596, 10489055220, 465303486780, 22363517407770, 1159112646836430, 64499453473280826, 3837361123234687230, 243168894263042103720, 16356164256377393353080, 1164094991704907423494920
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Programs

  • Mathematica
    Join[{0, 0}, Table[4*n*(n - 1)*Pochhammer[1/2, n]*4^(n - 2)* Hypergeometric1F1[2 - n, -2*n, 1], {n,2,50}]] (* G. C. Greubel, Aug 14 2017 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n-2, ((n+k+2)!/(4*k!*(n-k-2)!))), ", ")) \\ G. C. Greubel, Aug 14 2017

Formula

From G. C. Greubel, Aug 14 2017: (Start)
a(n) = 4*n*(n - 1)*(1/2)_{n}*4^(n - 2)*hypergeometric1f1(2-n, -2*n, 1).
E.g.f.: (-1/16)*(1 - 4*x)^(-5/2)*((56*x^2 - 44*x + 6)*sqrt(1 - 4*x) + (16*x^3 - 180*x^2 + 56*x - 6))*exp((1 - sqrt(1 - 4*x))/2). (End)
G.f.: (6*x^2/(1-x)^5)*hypergeometric2f0(3,5/2; - ; 4*x/(1-x)^2). - G. C. Greubel, Aug 16 2017

A065946 Bessel polynomial {y_n}''(-2).

Original entry on oeis.org

0, 0, 6, -150, 3870, -110670, 3538500, -125941284, 4953759300, -213744815460, 10047637214010, -511403305348650, 28029852267603186, -1646397200571955650, 103190849406195456360, -6875135229835376875560, 485256294032090950981800
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Programs

  • Mathematica
    Join[{0, 0}, Table[4*n*(n - 1)*Pochhammer[1/2, n]*(-4)^(n - 2)*
    Hypergeometric1F1[2 - n, -2*n, -1], {n,2,50}]] (* G. C. Greubel, Aug 14 2017 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n-2, ((n+k+2)!/(4*k!*(n-k-2)!))*(-1)^k), ", ")) \\ G. C. Greubel, Aug 14 2017

Formula

From G. C. Greubel, Aug 14 2017: (Start)
a(n) = 4*n*(n - 1)*(1/2){n}*(-4)^(n - 2)*hypergeometric1f1(2-n, -2*n, -1), where (a){n} is the Pochhammer symbol.
E.g.f.: (1/16)*(1 + 4*x)^(-5/2)*((24*x^2 + 20*x + 2)*sqrt(1 + 4*x) + (16*x^3 - 12*x^2 - 24*x - 2))*exp((sqrt(1 + 4*x) -1)/2). (End)
G.f.: (6*x^2/(1-x)^5)*hypergeometric2f0(3,5/2; - ; -4*x/(1-x)^2). - G. C. Greubel, Aug 16 2017
Showing 1-10 of 17 results. Next