cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A001519 a(n) = 3*a(n-1) - a(n-2) for n >= 2, with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418, 514229, 1346269, 3524578, 9227465, 24157817, 63245986, 165580141, 433494437, 1134903170, 2971215073, 7778742049, 20365011074, 53316291173, 139583862445, 365435296162, 956722026041
Offset: 0

Views

Author

Keywords

Comments

This is a bisection of the Fibonacci sequence A000045. a(n) = F(2*n-1), with F(n) = A000045(n) and F(-1) = 1.
Number of ordered trees with n+1 edges and height at most 3 (height=number of edges on a maximal path starting at the root). Number of directed column-convex polyominoes of area n+1. Number of nondecreasing Dyck paths of length 2n+2. - Emeric Deutsch, Jul 11 2001
Terms are the solutions x to: 5x^2-4 is a square, with 5x^2-4 in A081071 and sqrt(5x^2-4) in A002878. - Benoit Cloitre, Apr 07 2002
a(0) = a(1) = 1, a(n+1) is the smallest Fibonacci number greater than the n-th partial sum. - Amarnath Murthy, Oct 21 2002
The fractional part of tau*a(n) decreases monotonically to zero. - Benoit Cloitre, Feb 01 2003
Numbers k such that floor(phi^2*k^2) - floor(phi*k)^2 = 1 where phi=(1+sqrt(5))/2. - Benoit Cloitre, Mar 16 2003
Number of leftist horizontally convex polyominoes with area n+1.
Number of 31-avoiding words of length n on alphabet {1,2,3} which do not end in 3. (E.g., at n=3, we have 111, 112, 121, 122, 132, 211, 212, 221, 222, 232, 321, 322 and 332.) See A028859. - Jon Perry, Aug 04 2003
Appears to give all solutions > 1 to the equation: x^2 = ceiling(x*r*floor(x/r)) where r=phi=(1+sqrt(5))/2. - Benoit Cloitre, Feb 24 2004
a(1) = 1, a(2) = 2, then the least number such that the square of any term is just less than the geometric mean of its neighbors. a(n+1)*a(n-1) > a(n)^2. - Amarnath Murthy, Apr 06 2004
All positive integer solutions of Pell equation b(n)^2 - 5*a(n+1)^2 = -4 together with b(n)=A002878(n), n >= 0. - Wolfdieter Lang, Aug 31 2004
Essentially same as Pisot sequence E(2,5).
Number of permutations of [n+1] avoiding 321 and 3412. E.g., a(3) = 13 because the permutations of [4] avoiding 321 and 3412 are 1234, 2134, 1324, 1243, 3124, 2314, 2143, 1423, 1342, 4123, 3142, 2413, 2341. - Bridget Tenner, Aug 15 2005
Number of 1324-avoiding circular permutations on [n+1].
A subset of the Markoff numbers (A002559). - Robert G. Wilson v, Oct 05 2005
(x,y) = (a(n), a(n+1)) are the solutions of x/(yz) + y/(xz) + z/(xy) = 3 with z=1. - Floor van Lamoen, Nov 29 2001
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 1. - Herbert Kociemba, Jun 10 2004
With interpolated zeros, counts closed walks of length n at the start or end node of P_4. a(n) counts closed walks of length 2n at the start or end node of P_4. The sequence 0,1,0,2,0,5,... counts walks of length n between the start and second node of P_4. - Paul Barry, Jan 26 2005
a(n) is the number of ordered trees on n edges containing exactly one non-leaf vertex all of whose children are leaves (every ordered tree must contain at least one such vertex). For example, a(0) = 1 because the root of the tree with no edges is not considered to be a leaf and the condition "all children are leaves" is vacuously satisfied by the root and a(4) = 13 counts all 14 ordered trees on 4 edges (A000108) except (ignore dots)
|..|
.\/.
which has two such vertices. - David Callan, Mar 02 2005
Number of directed column-convex polyominoes of area n. Example: a(2)=2 because we have the 1 X 2 and the 2 X 1 rectangles. - Emeric Deutsch, Jul 31 2006
Same as the number of Kekulé structures in polyphenanthrene in terms of the number of hexagons in extended (1,1)-nanotubes. See Table 1 on page 411 of I. Lukovits and D. Janezic. - Parthasarathy Nambi, Aug 22 2006
Number of free generators of degree n of symmetric polynomials in 3-noncommuting variables. - Mike Zabrocki, Oct 24 2006
Inverse: With phi = (sqrt(5) + 1)/2, log_phi((sqrt(5)*a(n) + sqrt(5*a(n)^2 - 4))/2) = n for n >= 1. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007
Consider a teacher who teaches one student, then he finds he can teach two students while the original student learns to teach a student. And so on with every generation an individual can teach one more student then he could before. a(n) starting at a(2) gives the total number of new students/teachers (see program). - Ben Paul Thurston, Apr 11 2007
The Diophantine equation a(n)=m has a solution (for m >= 1) iff ceiling(arcsinh(sqrt(5)*m/2)/log(phi)) != ceiling(arccosh(sqrt(5)*m/2)/log(phi)) where phi is the golden ratio. An equivalent condition is A130255(m)=A130256(m). - Hieronymus Fischer, May 24 2007
a(n+1) = B^(n)(1), n >= 0, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g., 2=`0`, 5=`00`, 13=`000`, ..., in Wythoff code.
Bisection of the Fibonacci sequence into odd-indexed nonzero terms (1, 2, 5, 13, ...) and even-indexed terms (1, 3, 8, 21, ...) may be represented as row sums of companion triangles A140068 and A140069. - Gary W. Adamson, May 04 2008
a(n) is the number of partitions pi of [n] (in standard increasing form) such that Flatten[pi] is a (2-1-3)-avoiding permutation. Example: a(4)=13 counts all 15 partitions of [4] except 13/24 and 13/2/4. Here "standard increasing form" means the entries are increasing in each block and the blocks are arranged in increasing order of their first entries. Also number that avoid 3-1-2. - David Callan, Jul 22 2008
Let P be the partial sum operator, A000012: (1; 1,1; 1,1,1; ...) and A153463 = M, the partial sum & shift operator. It appears that beginning with any randomly taken sequence S(n), iterates of the operations M * S(n), -> M * ANS, -> P * ANS, etc. (or starting with P) will rapidly converge upon a two-sequence limit cycle of (1, 2, 5, 13, 34, ...) and (1, 1, 3, 8, 21, ...). - Gary W. Adamson, Dec 27 2008
Number of musical compositions of Rhythm-music over a time period of n-1 units. Example: a(4)=13; indeed, denoting by R a rest over a time period of 1 unit and by N[j] a note over a period of j units, we have (writing N for N[1]): NNN, NNR, NRN, RNN, NRR, RNR, RRN, RRR, N[2]R, RN[2], NN[2], N[2]N, N[3] (see the J. Groh reference, pp. 43-48). - Juergen K. Groh (juergen.groh(AT)lhsystems.com), Jan 17 2010
Given an infinite lower triangular matrix M with (1, 2, 3, ...) in every column but the leftmost column shifted upwards one row. Then (1, 2, 5, ...) = lim_{n->infinity} M^n. (Cf. A144257.) - Gary W. Adamson, Feb 18 2010
As a fraction: 8/71 = 0.112676 or 98/9701 = 0.010102051334... (fraction 9/71 or 99/9701 for sequence without initial term). 19/71 or 199/9701 for sequence in reverse. - Mark Dols, May 18 2010
For n >= 1, a(n) is the number of compositions (ordered integer partitions) of 2n-1 into an odd number of odd parts. O.g.f.: (x-x^3)/(1-3x^2+x^4) = A(A(x)) where A(x) = 1/(1-x)-1/(1-x^2).
For n > 0, determinant of the n X n tridiagonal matrix with 1's in the super and subdiagonals, (1,3,3,3,...) in the main diagonal, and the rest zeros. - Gary W. Adamson, Jun 27 2011
The Gi3 sums, see A180662, of the triangles A108299 and A065941 equal the terms of this sequence without a(0). - Johannes W. Meijer, Aug 14 2011
The number of permutations for which length equals reflection length. - Bridget Tenner, Feb 22 2012
Number of nonisomorphic graded posets with 0 and 1 and uniform Hasse graph of rank n+1, with exactly 2 elements of each rank between 0 and 1. (Uniform used in the sense of Retakh, Serconek and Wilson. Graded used in R. Stanley's sense that all maximal chains have the same length.)
HANKEL transform of sequence and the sequence omitting a(0) is the sequence A019590(n). This is the unique sequence with that property. - Michael Somos, May 03 2012
The number of Dyck paths of length 2n and height at most 3. - Ira M. Gessel, Aug 06 2012
Pisano period lengths: 1, 3, 4, 3, 10, 12, 8, 6, 12, 30, 5, 12, 14, 24, 20, 12, 18, 12, 9, 30, ... - R. J. Mathar, Aug 10 2012
Primes in the sequence are 2, 5, 13, 89, 233, 1597, 28657, ... (apparently A005478 without the 3). - R. J. Mathar, May 09 2013
a(n+1) is the sum of rising diagonal of the Pascal triangle written as a square - cf. comments in A085812. E.g., 13 = 1+5+6+1. - John Molokach, Sep 26 2013
a(n) is the top left entry of the n-th power of any of the 3 X 3 matrices [1, 1, 1; 1, 1, 1; 0, 1, 1] or [1, 1, 1; 0, 1, 1; 1, 1, 1] or [1, 1, 0; 1, 1, 1; 1, 1, 1] or [1, 0, 1; 1, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
Except for the initial term, positive values of x (or y) satisfying x^2 - 3xy + y^2 + 1 = 0. - Colin Barker, Feb 04 2014
Except for the initial term, positive values of x (or y) satisfying x^2 - 18xy + y^2 + 64 = 0. - Colin Barker, Feb 16 2014
Positive values of x such that there is a y satisfying x^2 - xy - y^2 - 1 = 0. - Ralf Stephan, Jun 30 2014
a(n) is also the number of permutations simultaneously avoiding 231, 312 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl, Aug 07 2014
(1, a(n), a(n+1)), n >= 0, are Markoff triples (see A002559 and Robert G. Wilson v's Oct 05 2005 comment). In the Markoff tree they give one of the outer branches. Proof: a(n)*a(n+1) - 1 = A001906(2*n)^2 = (a(n+1) - a(n))^2 = a(n)^2 + a(n+1)^2 - 2*a(n)*a(n+1), thus 1^2 + a(n)^2 + a(n+1)^2 = 3*a(n)*a(n+1). - Wolfdieter Lang, Jan 30 2015
For n > 0, a(n) is the smallest positive integer not already in the sequence such that a(1) + a(2) + ... + a(n) is a Fibonacci number. - Derek Orr, Jun 01 2015
Number of vertices of degree n-2 (n >= 3) in all Fibonacci cubes, see Klavzar, Mollard, & Petkovsek. - Emeric Deutsch, Jun 22 2015
Except for the first term, this sequence can be generated by Corollary 1 (ii) of Azarian's paper in the references for this sequence. - Mohammad K. Azarian, Jul 02 2015
Precisely the numbers F(n)^k + F(n+1)^k that are also Fibonacci numbers with k > 1, see Luca & Oyono. - Charles R Greathouse IV, Aug 06 2015
a(n) = MA(n) - 2*(-1)^n where MA(n) is exactly the maximum area of a quadrilateral with lengths of sides in order L(n-2), L(n-2), F(n+1), F(n+1) for n > 1 and L(n)=A000032(n). - J. M. Bergot, Jan 28 2016
a(n) is the number of bargraphs of semiperimeter n+1 having no valleys (i.e., convex bargraphs). Equivalently, number of bargraphs of semiperimeter n+1 having exactly 1 peak. Example: a(5) = 34 because among the 35 (=A082582(6)) bargraphs of semiperimeter 6 only the one corresponding to the composition [2,1,2] has a valley. - Emeric Deutsch, Aug 12 2016
Integers k such that the fractional part of k*phi is less than 1/k. See Byszewski link p. 2. - Michel Marcus, Dec 10 2016
Number of words of length n-1 over {0,1,2,3} in which binary subwords appear in the form 10...0. - Milan Janjic, Jan 25 2017
With a(0) = 0 this is the Riordan transform with the Riordan matrix A097805 (of the associated type) of the Fibonacci sequence A000045. See a Feb 17 2017 comment on A097805. - Wolfdieter Lang, Feb 17 2017
Number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) < e(j) < e(k). [Martinez and Savage, 2.12] - Eric M. Schmidt, Jul 17 2017
Number of permutations of [n] that avoid the patterns 321 and 2341. - Colin Defant, May 11 2018
The sequence solves the following problem: find all the pairs (i,j) such that i divides 1+j^2 and j divides 1+i^2. In fact, the pairs (a(n), a(n+1)), n > 0, are all the solutions. - Tomohiro Yamada, Dec 23 2018
Number of permutations in S_n whose principal order ideals in the Bruhat order are lattices (equivalently, modular, distributive, Boolean lattices). - Bridget Tenner, Jan 16 2020
From Wolfdieter Lang, Mar 30 2020: (Start)
a(n) is the upper left entry of the n-th power of the 2 X 2 tridiagonal matrix M_2 = Matrix([1,1], [1,2]) from A322602: a(n) = ((M_2)^n)[1,1].
Proof: (M_2)^2 = 3*M + 1_2 (with the 2 X 2 unit matrix 1_2) from the characteristic polynomial of M_2 (see a comment in A322602) and the Cayley-Hamilton theorem. The recurrence M^n = M*M^(n-1) leads to (M_n)^n = S(n, 3)*1_2 + S(n-a, 3)*(M - 3*1_2), for n >= 0, with S(n, 3) = F(2(n+1)) = A001906(n+1). Hence ((M_2)^n)[1,1] = S(n, 3) - 2*S(n-1, 3) = a(n) = F(2*n-1) = (1/(2*r+1))*r^(2*n-1)*(1 + (1/r^2)^(2*n-1)), with r = rho(5) = A001622 (golden ratio) (see the first Aug 31 2004 formula, using the recurrence of S(n, 3), and the Michael Somos Oct 28 2002 formula). This proves a conjecture of Gary W. Adamson in A322602.
The ratio a(n)/a(n-1) converges to r^2 = rho(5)^2 = A104457 for n -> infinity (see the a(n) formula in terms of r), which is one of the statements by Gary W. Adamson in A322602. (End)
a(n) is the number of ways to stack coins with a bottom row of n coins such that any coin not on the bottom row touches exactly two coins in the row below, and all the coins on any row are contiguous [Wilf, 2.12]. - Greg Dresden, Jun 29 2020
a(n) is the upper left entry of the (2*n)-th power of the 4 X 4 Jacobi matrix L with L(i,j)=1 if |i-j| = 1 and L(i,j)=0 otherwise. - Michael Shmoish, Aug 29 2020
All positive solutions of the indefinite binary quadratic F(1, -3, 1) := x^2 - 3*x*y + y^2, of discriminant 5, representing -1 (special Markov triples (1, y=x, z=y) if y <= z) are [x(n), y(n)] = [abs(F(2*n+1)), abs(F(2*n-1))], for n = -infinity..+infinity. (F(-n) = (-1)^(n+1)*F(n)). There is only this single family of proper solutions, and there are no improper solutions. [See also the Floor van Lamoen Nov 29 2001 comment, which uses this negative n, and my Jan 30 2015 comment.] - Wolfdieter Lang, Sep 23 2020
These are the denominators of the lower convergents to the golden ratio, tau; they are also the numerators of the upper convergents (viz. 1/1 < 3/2 < 8/5 < 21/13 < ... < tau < ... 13/8 < 5/3 < 2/1). - Clark Kimberling, Jan 02 2022
a(n+1) is the number of subgraphs of the path graph on n vertices. - Leen Droogendijk, Jun 17 2023
For n > 4, a(n+2) is the number of ways to tile this 3 x n "double-box" shape with squares and dominos (reflections or rotations are counted as distinct tilings). The double-box shape is made up of two horizontal strips of length n, connected by three vertical columns of length 3, and the center column can be located anywhere not touching the two outside columns.
_ _ _ _
|||_|||_|||_|||_|||
|| _ |_| _ _ ||
|||_|||_|||_|||_|||. - Greg Dresden and Ruishan Wu, Aug 25 2024
a(n+1) is the number of integer sequences a_1, ..., a_n such that for any number 1 <= k <= n, (a_1 + ... + a_k)^2 = a_1^3 + ... + a_k^3. - Yifan Xie, Dec 07 2024

Examples

			a(3) = 13: there are 14 ordered trees with 4 edges; all of them, except for the path with 4 edges, have height at most 3.
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 13,15.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 188.
  • N. G. de Bruijn, D. E. Knuth, and S. O. Rice, The average height of planted plane trees, in: Graph Theory and Computing (ed. T. C. Read), Academic Press, New York, 1972, pp. 15-22.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 92.
  • Jurgen Groh, Computerimprovisation mit Markoffketten und "kognitiven Algorithmen", Studienarbeit, Technische Hochschule Darmstadt, 1987.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 39.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. Stanley, Enumerative combinatorics, Vol. 1. Cambridge University Press, Cambridge, 1997, pp. 96-100.
  • H. S. Wilf, Generatingfunctionology, 3rd ed., A K Peters Ltd., Wellesley, MA, 2006, p. 41.

Crossrefs

Fibonacci A000045 = union of this sequence and A001906.
a(n)= A060920(n, 0).
Row 3 of array A094954.
Equals A001654(n+1) - A001654(n-1), n > 0.
A122367 is another version. Inverse sequences A130255 and A130256. Row sums of A140068, A152251, A153342, A179806, A179745, A213948.

Programs

  • GAP
    a:=[1,1];; for n in [3..10^2] do a[n]:=3*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Sep 27 2017
  • Haskell
    a001519 n = a001519_list !! n
    a001519_list = 1 : zipWith (-) (tail a001906_list) a001906_list
    -- Reinhard Zumkeller, Jan 11 2012
    a001519_list = 1 : f a000045_list where f (_:x:xs) = x : f xs
    -- Reinhard Zumkeller, Aug 09 2013
    
  • Magma
    [1] cat [(Lucas(2*n) - Fibonacci(2*n))/2: n in [1..50]]; // Vincenzo Librandi, Jul 02 2014
    
  • Maple
    A001519:=-(-1+z)/(1-3*z+z**2); # Simon Plouffe in his 1992 dissertation; gives sequence without an initial 1
    A001519 := proc(n) option remember: if n=0 then 1 elif n=1 then 1 elif n>=2 then 3*procname(n-1)-procname(n-2) fi: end: seq(A001519(n), n=0..28); # Johannes W. Meijer, Aug 14 2011
  • Mathematica
    Fibonacci /@ (2Range[29] - 1) (* Robert G. Wilson v, Oct 05 2005 *)
    LinearRecurrence[{3, -1}, {1, 1}, 29] (* Robert G. Wilson v, Jun 28 2012 *)
    a[ n_] := With[{c = Sqrt[5]/2}, ChebyshevT[2 n - 1, c]/c]; (* Michael Somos, Jul 08 2014 *)
    CoefficientList[ Series[(1 - 2x)/(1 - 3x + x^2), {x, 0, 30}], x] (* Robert G. Wilson v, Feb 01 2015 *)
  • Maxima
    a[0]:1$ a[1]:1$ a[n]:=3*a[n-1]-a[n-2]$ makelist(a[n],n,0,30); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    {a(n) = fibonacci(2*n - 1)}; /* Michael Somos, Jul 19 2003 */
    
  • PARI
    {a(n) = real( quadgen(5) ^ (2*n))}; /* Michael Somos, Jul 19 2003 */
    
  • PARI
    {a(n) = subst( poltchebi(n) + poltchebi(n - 1), x, 3/2) * 2/5}; /* Michael Somos, Jul 19 2003 */
    
  • Sage
    [lucas_number1(n,3,1)-lucas_number1(n-1,3,1) for n in range(30)] # Zerinvary Lajos, Apr 29 2009
    

Formula

G.f.: (1-2*x)/(1-3*x+x^2).
G.f.: 1 / (1 - x / (1 - x / (1 - x))). - Michael Somos, May 03 2012
a(n) = A001906(n+1) - 2*A001906(n).
a(n) = a(1-n) for all n in Z.
a(n+2) = (a(n+1)^2+1)/a(n) with a(1)=1, a(2)=2. - Benoit Cloitre, Aug 29 2002
a(n) = (phi^(2*n-1) + phi^(1-2*n))/sqrt(5) where phi=(1+sqrt(5))/2. - Michael Somos, Oct 28 2002
a(n) = A007598(n-1) + A007598(n) = A000045(n-1)^2 + A000045(n)^2 = F(n)^2 + F(n+1)^2. - Henry Bottomley, Feb 09 2001
a(n) = Sum_{k=0..n} binomial(n+k, 2*k). - Len Smiley, Dec 09 2001
a(n) ~ (1/5)*sqrt(5)*phi^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(n) = Sum_{k=0..n} C(n, k)*F(k+1). - Benoit Cloitre, Sep 03 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 1)=a(n) (this comment is essentially the same as that of L. Smiley). - Benoit Cloitre, Nov 10 2002
a(n) = (1/2)*(3*a(n-1) + sqrt(5*a(n-1)^2-4)). - Benoit Cloitre, Apr 12 2003
Main diagonal of array defined by T(i, 1) = T(1, j) = 1, T(i, j) = max(T(i-1, j) + T(i-1, j-1); T(i-1, j-1) + T(i, j-1)). - Benoit Cloitre, Aug 05 2003
Hankel transform of A002212. E.g., Det([1, 1, 3;1, 3, 10;3, 10, 36]) = 5. - Philippe Deléham, Jan 25 2004
Solutions x > 0 to equation floor(x*r*floor(x/r)) = floor(x/r*floor(x*r)) when r=phi. - Benoit Cloitre, Feb 15 2004
a(n) = Sum_{i=0..n} binomial(n+i, n-i). - Jon Perry, Mar 08 2004
a(n) = S(n-1, 3) - S(n-2, 3) = T(2*n-1, sqrt(5)/2)/(sqrt(5)/2) with S(n, x) = U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first kind. See triangle A049310, resp. A053120. - Wolfdieter Lang, Aug 31 2004
a(n) = ((-1)^(n-1))*S(2*(n-1), i), with the imaginary unit i and S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. - Wolfdieter Lang, Aug 31 2004
a(n) = Sum_{0<=i_1<=i_2<=n} binomial(i_2, i_1)*binomial(n, i_1+i_2). - Benoit Cloitre, Oct 14 2004
a(n) = L(n,3), where L is defined as in A108299; see also A002878 for L(n,-3). - Reinhard Zumkeller, Jun 01 2005
a(n) = a(n-1) + Sum_{i=0..n-1} a(i)*a(n) = F(2*n+1)*Sum_{i=0..n-1} a(i) = F(2*n). - Andras Erszegi (erszegi.andras(AT)chello.hu), Jun 28 2005
The i-th term of the sequence is the entry (1, 1) of the i-th power of the 2 X 2 matrix M = ((1, 1), (1, 2)). - Simone Severini, Oct 15 2005
a(n-1) = (1/n)*Sum_{k=0..n} B(2*k)*F(2*n-2*k)*binomial(2*n, 2*k) where B(2*k) is the (2*k)-th Bernoulli number. - Benoit Cloitre, Nov 02 2005
a(n) = A055105(n,1) + A055105(n,2) + A055105(n,3) = A055106(n,1) + A055106(n,2). - Mike Zabrocki, Oct 24 2006
a(n) = (2/sqrt(5))*cosh((2n-1)*psi), where psi=log(phi) and phi=(1+sqrt(5))/2. - Hieronymus Fischer, Apr 24 2007
a(n) = (phi+1)^n - phi*A001906(n) with phi=(1+sqrt(5))/2. - Reinhard Zumkeller, Nov 22 2007
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3); a(n) = ((sqrt(5) + 5)/10)*(3/2 + sqrt(5)/2)^(n-2) + ((-sqrt(5) + 5)/10)*(3/2 - sqrt(5)/2)^(n-2). - Antonio Alberto Olivares, Mar 21 2008
a(n) = A147703(n,0). - Philippe Deléham, Nov 29 2008
Sum_{n>=0} atan(1/a(n)) = (3/4)*Pi. - Jaume Oliver Lafont, Feb 27 2009
With X,Y defined as X = ( F(n) F(n+1) ), Y = ( F(n+2) F(n+3) ), where F(n) is the n-th Fibonacci number (A000045), it follows a(n+2) = X.Y', where Y' is the transpose of Y (n >= 0). - K.V.Iyer, Apr 24 2009
From Gary Detlefs, Nov 22 2010: (Start)
a(n) = Fibonacci(2*n+2) mod Fibonacci(2*n), n > 1.
a(n) = (Fibonacci(n-1)^2 + Fibonacci(n)^2 + Fibonacci(2*n-1))/2. (End)
INVERT transform is A166444. First difference is A001906. Partial sums is A055588. Binomial transform is A093129. Binomial transform of A000045(n-1). - Michael Somos, May 03 2012
a(n) = 2^n*f(n;1/2), where f(n;d), n=0,1,...,d, denote the so-called delta-Fibonacci numbers (see Witula et al. papers and comments in A000045). - Roman Witula, Jul 12 2012
a(n) = (Fibonacci(n+2)^2 + Fibonacci(n-3)^2)/5. - Gary Detlefs, Dec 14 2012
G.f.: 1 + x/( Q(0) - x ) where Q(k) = 1 - x/(x*k + 1 )/Q(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 23 2013
G.f.: (1-2*x)*G(0)/(2-3*x), where G(k) = 1 + 1/( 1 - x*(5*k-9)/(x*(5*k-4) - 6/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 19 2013
G.f.: 1 + x*(1-x^2)*Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 + 2*x - x^2)/( x*(4*k+4 + 2*x - x^2 ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 11 2013
G.f.: Q(0,u), where u=x/(1-x), Q(k,u) = 1 + u^2 + (k+2)*u - u*(k+1 + u)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
Sum_{n>=2} 1/(a(n) - 1/a(n)) = 1. Compare with A001906, A007805 and A097843. - Peter Bala, Nov 29 2013
Let F(n) be the n-th Fibonacci number, A000045(n), and L(n) be the n-th Lucas number, A000032(n). Then for n > 0, a(n) = F(n)*L(n-1) + (-1)^n. - Charlie Marion, Jan 01 2014
a(n) = A238731(n,0). - Philippe Deléham, Mar 05 2014
1 = a(n)*a(n+2) - a(n+1)*a(n+1) for all n in Z. - Michael Somos, Jul 08 2014
a(n) = (L(2*n+4) + L(2*n-6))/25 for L(n)=A000032(n). - J. M. Bergot, Dec 30 2014
a(n) = (L(n-1)^2 + L(n)^2)/5 with L(n)=A000032(n). - J. M. Bergot, Dec 31 2014
a(n) = (L(n-2)^2 + L(n+1)^2)/10 with L(n)=A000032(n). - J. M. Bergot, Oct 23 2015
a(n) = 3*F(n-1)^2 + F(n-3)*F(n) - 2*(-1)^n. - J. M. Bergot, Feb 17 2016
a(n) = (F(n-1)*L(n) + F(n)*L(n-1))/2 = (A081714(n-1) + A128534(n))/2. - J. M. Bergot, Mar 22 2016
E.g.f.: (2*exp(sqrt(5)*x) + 3 + sqrt(5))*exp(-x*(sqrt(5)-3)/2)/(5 + sqrt(5)). - Ilya Gutkovskiy, Jul 04 2016
a(n) = ((M_2)^n)[1,1] = S(n, 3) - 2*S(n-1, 3), with the 2 X 2 tridiagonal matrix M_2 = Matrix([1,1], [1,2]) from A322602. For a proof see the Mar 30 2020 comment above. - Wolfdieter Lang, Mar 30 2020
Sum_{n>=1} 1/a(n) = A153387. - Amiram Eldar, Oct 05 2020
a(n+1) = Product_{k=1..n} (1 + 4*cos(2*Pi*k/(2*n + 1))^2). Special case of A099390. - Greg Dresden, Oct 16 2021
a(n+1) = 4^(n+1)*Sum_{k >= n} binomial(2*k,2*n)*(1/5)^(k+1). Cf. A102591. - Peter Bala, Nov 29 2021
a(n) = cosh((2*n-1)*arcsinh(1/2))/sqrt(5/4). - Peter Luschny, May 21 2022
From J. M. Bergot, May 27 2022: (Start)
a(n) = F(n-1)*L(n) - (-1)^n where L(n)=A000032(n) and F(n)=A000045(n).
a(n) = (L(n-1)^2 + L(n-1)*L(n+1))/5 + (-1)^n.
a(n) = 2*(area of a triangle with vertices at (L(n-2), L(n-1)), (F(n), F(n-1)), (L(n), L(n+1))) + 5*(-1)^n for n > 2. (End)
a(n) = A059929(n-1)+A059929(n-2), n>1. - R. J. Mathar, Jul 09 2024

Extensions

Entry revised by N. J. A. Sloane, Aug 24 2006, May 13 2008

A001515 Bessel polynomial y_n(x) evaluated at x=1.

Original entry on oeis.org

1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, 90960751, 1733584106, 36496226977, 841146804577, 21065166341402, 569600638022431, 16539483668991901, 513293594376771362, 16955228098102446847, 593946277027962411007, 21992967478132711654106, 858319677924203716921141
Offset: 0

Views

Author

Keywords

Comments

For some applications it is better to start this sequence with an extra 1 at the beginning: 1, 1, 2, 37, 266, 2431, 27007, 353522, 5329837, ... (again with offset 0). This sequence now has its own entry - see A144301.
Number of partitions of {1,...,k}, n <= k <= 2n, into n blocks with no more than 2 elements per block. Restated, number of ways to use the elements of {1,...,k}, n <= k <= 2n, once each to form a collection of n sets, each having 1 or 2 elements. - Bob Proctor, Apr 18 2005, Jun 26 2006. E.g., for n=2 we get: (k=2): {1,2}; (k=3): {1,23}, {2,13}, {3,12}; (k=4): {12,34}, {13,24}, {14,23}, for a total of a(2) = 7 partitions.
Equivalently, number of sequences of n unlabeled items such that each item occurs just once or twice (cf. A105749). - David Applegate, Dec 08 2008
Numerator of (n+1)-th convergent to 1+tanh(1). - Benoit Cloitre, Dec 20 2002
The following Maple lines show how this sequence and A144505, A144498, A001514, A144513, A144506, A144514, A144507, A144301 are related.
f0:=proc(n) local k; add((n+k)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f0(n),n=0..10)];
# that is this sequence
f1:=proc(n) local k; add((n+k+1)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f1(n),n=0..10)];
# that is A144498
f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f2(n),n=0..10)];
# that is A144513; divided by 2 gives A001514
f3:=proc(n) local k; add((n+k+3)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f3(n),n=0..10)];
# that is A144514; divided by 6 gives A144506
f4:=proc(n) local k; add((n+k+4)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f4(n),n=0..10)];
# that divided by 24 gives A144507
a(n) is also the numerator of the continued fraction sequence beginning with 2 followed by 3 and the remaining odd numbers: [2,3,5,7,9,11,13,...]. - Gil Broussard, Oct 07 2009
Also, number of scenarios in the Gift Exchange Game when a gift can be stolen at most once. - N. J. A. Sloane, Jan 25 2017

Examples

			The first few Bessel polynomials are (cf. A001497, A001498):
  y_0 = 1
  y_1 = 1 +   x
  y_2 = 1 + 3*x +  3*x^2
  y_3 = 1 + 6*x + 15*x^2 + 15*x^3, etc.
G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 266*x^4 + 2431*x^5 + 27007*x^6 + 353522*x^7 + ...
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A144301 for other formulas and comments.
Row sums of Bessel triangle A001497 as well as of A001498.
Partial sums: A105748.
First differences: A144498.
Replace "sets" with "lists" in comment: A001517.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are this sequence, A144416, A144508, A144509, A149187, A281358, A281359, A281360, A281361.

Programs

  • Haskell
    a001515 = sum . a001497_row -- Reinhard Zumkeller, Nov 24 2014
    
  • Magma
    [(&+[Binomial(n+j, 2*j)*Catalan(j)*Factorial(j+1)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
    
  • Maple
    A001515 := proc(n) option remember; if n=0 then 1 elif n=1 then 2 else (2*n-1)*A001515(n-1)+A001515(n-2); fi; end;
    A001515:=proc(n) local k; add( (n+k)!/((n-k)!*k!*2^k),k=0..n); end;
    A001515:= n-> hypergeom( [n+1,-n],[],-1/2);
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==(2n-1)a[n-1]+a[n-2]},a[n], {n,25}] (* Harvey P. Dale, Jun 18 2011 *)
    Table[Sum[BellY[n+1, k, (2 Range[n+1] - 3)!!], {k, n+1}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    {a(n) = if( n<0, n = -1 - n); sum( k=0, n, (2*n - k)! / (k! * (n-k)!) * 2^(k-n))} /* Michael Somos, Apr 08 2012 */
    
  • SageMath
    [sum(binomial(n+j,2*j)*binomial(2*j,j)*factorial(j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023

Formula

The following formulas can all be found in (or are easily derived from formulas in) Grosswald's book.
D-finite with recurrence: a(0) = 1, a(1) = 2; thereafter a(n) = (2*n-1)*a(n-1) + a(n-2).
E.g.f.: exp(1-sqrt(1-2*x))/sqrt(1-2*x).
a(n) = Sum_{ k = 0..n } binomial(n+k,2*k)*(2*k)!/(k!*2^k).
Equivalently, a(n) = Sum_{ k = 0..n } (n+k)!/((n-k)!*k!*2^k) = Sum_{ k = n..2n } k!/((2n-k)!*(k-n)!*2^(k-n)).
a(n) = Hypergeometric2F0( [n+1, -n] ; - ; -1/2).
a(n) = A105749(n)/n!.
a(n) ~ exp(1)*(2n)!/(n!*2^n) as n -> oo. [See Grosswald, p. 124]
a(n) = A144301(n+1).
G.f.: 1/(1-x-x/(1-x-2*x/(1-x-3*x/(1-x-4*x/(1-x-5*x/(1-.... (continued fraction). - Paul Barry, Feb 08 2009
From Michael Somos, Apr 08 2012: (Start)
a(-1 - n) = a(n).
(a(n+1) + a(n+2))^2 = a(n)*a(n+2) + a(n+1)*a(n+3) for all integer n. (End)
G.f.: 1/G(0) where G(k) = 1 - x - x*(2*k+1)/(1 - x - 2*x*(k+1)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2012
E.g.f.: E(0)/(2*sqrt(1-2*x)), where E(k) = 1 + 1/(1 - 2*x/(2*x + (k+1)*(1+sqrt(1-2*x))/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 23 2013
G.f.: T(0)/(1-x), where T(k) = 1 - (k+1)*x/((k+1)*x - (1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2013
a(n) = (2*BesselI(1/2, 1)+BesselI(3/2, 1))*BesselK(n+1/2, 1). - Jean-François Alcover, Feb 03 2014
a(n) = exp(1)*sqrt(2/Pi)*BesselK(1/2+n,1). - Gerry Martens, Jul 22 2015
From Peter Bala, Apr 14 2017: (Start)
a(n) = (1/n!)*Integral_{x = 0..inf} exp(-x)*x^n*(1 + x/2)^n dx.
E.g.f.: d/dx( exp(x*c(x/2)) ) = 1 + 2*x + 7*x^2/2! + 37*x^3/3! + ..., where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 2^n * hypergeometric1f1(-n; -2*n; 2).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 2*t/(1-t)^2). (End)

Extensions

Extensively edited by N. J. A. Sloane, Dec 07 2008

A001858 Number of forests of trees on n labeled nodes.

Original entry on oeis.org

1, 1, 2, 7, 38, 291, 2932, 36961, 561948, 10026505, 205608536, 4767440679, 123373203208, 3525630110107, 110284283006640, 3748357699560961, 137557910094840848, 5421179050350334929, 228359487335194570528, 10239206473040881277575, 486909744862576654283616
Offset: 0

Views

Author

Keywords

Comments

The number of integer lattice points in the permutation polytope of {1,2,...,n}. - Max Alekseyev, Jan 26 2010
Equals the number of score sequences for a tournament on n vertices. See Prop. 7 of the article by Bartels et al., or Example 3.1 in the article by Stanley. - David Radcliffe, Aug 02 2022
Number of labeled acyclic graphs on n vertices. The unlabeled version is A005195. The covering case is A105784, connected A000272. - Gus Wiseman, Apr 29 2024

Examples

			From _Gus Wiseman_, Apr 29 2024: (Start)
Edge-sets of the a(4) = 38 forests:
  {}  {12}  {12,13}  {12,13,14}
      {13}  {12,14}  {12,13,24}
      {14}  {12,23}  {12,13,34}
      {23}  {12,24}  {12,14,23}
      {24}  {12,34}  {12,14,34}
      {34}  {13,14}  {12,23,24}
            {13,23}  {12,23,34}
            {13,24}  {12,24,34}
            {13,34}  {13,14,23}
            {14,23}  {13,14,24}
            {14,24}  {13,23,24}
            {14,34}  {13,23,34}
            {23,24}  {13,24,34}
            {23,34}  {14,23,24}
            {24,34}  {14,23,34}
                     {14,24,34}
(End)
		

References

  • B. Bollobas, Modern Graph Theory, Springer, 1998, p. 290.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The connected case is A000272, rooted A000169.
The unlabeled version is A005195, connected A000055.
The covering case is A105784, unlabeled A144958.
Row sums of A138464.
For triangles instead of cycles we have A213434, covering A372168.
For a unique cycle we have A372193, covering A372195.
A002807 counts cycles in a complete graph.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Maple
    exp(x+x^2+add(n^(n-2)*x^n/n!, n=3..50));
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1)*j^(j-2)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 15 2008
    # third Maple program:
    F:= exp(-LambertW(-x)*(1+LambertW(-x)/2)):
    S:= series(F,x,51):
    seq(coeff(S,x,j)*j!, j=0..50); # Robert Israel, May 21 2015
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Exp[t-t^2/2],{x,0,nn}],x] (* Geoffrey Critzer, Sep 05 2012 *)
    nmax = 20; CoefficientList[Series[-LambertW[-x]/(x*E^(LambertW[-x]^2/2)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 19 2019 *)
  • PARI
    a(n)=if(n<0,0,sum(m=0,n,sum(j=0,m,binomial(m,j)*binomial(n-1,n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!)) /* Michael Somos, Aug 22 2002 */

Formula

E.g.f.: exp( Sum_{n>=1} n^(n-2)*x^n/n! ). This implies (by a theorem of Wright) that a(n) ~ exp(1/2)*n^(n-2). - N. J. A. Sloane, May 12 2008 [Corrected by Philippe Flajolet, Aug 17 2008]
E.g.f.: exp(T - T^2/2), where T = T(x) = Sum_{n>=1} n^(n-1)*x^n/n! is Euler's tree function (see A000169). - Len Smiley, Dec 12 2001
Shifts 1 place left under the hyperbinomial transform (cf. A088956). - Paul D. Hanna, Nov 03 2003
a(0) = 1, a(n) = Sum_{j=0..n-1} C(n-1,j) (j+1)^(j-1) a(n-1-j) if n>0. - Alois P. Heinz, Sep 15 2008

Extensions

More terms from Michael Somos, Aug 22 2002

A001517 Bessel polynomials y_n(x) (see A001498) evaluated at 2.

Original entry on oeis.org

1, 3, 19, 193, 2721, 49171, 1084483, 28245729, 848456353, 28875761731, 1098127402131, 46150226651233, 2124008553358849, 106246577894593683, 5739439214861417731, 332993721039856822081, 20651350143685984386753
Offset: 0

Views

Author

Keywords

Comments

Numerators of successive convergents to e using continued fraction 1 + 2/(1 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + 1/(22 + 1/26 + ...)))))).
Number of ways to use the elements of {1,...,k}, n <= k <= 2n, once each to form a collection of n lists, each having length 1 or 2. - Bob Proctor, Apr 18 2005, Jun 26 2006

References

  • L. Euler, 1737.
  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 6th ed., Section 0.126, p. 2.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A080893.
a(n) = A099022(n)/n!.
Partial sums: A105747.
Replace "lists" with "sets" in comment: A001515.

Programs

  • Maple
    A:= gfun:-rectoproc({a(n) = (4*n-2)*a(n-1) + a(n-2),a(0)=1,a(1)=3},a(n),remember):
    map(A, [$0..20]); # Robert Israel, Jul 22 2015
    f:=proc(n) option remember; if n = 0 then 1 elif n=1 then 3 else f(n-2)+(4*n-2)*f(n-1); fi; end;
    [seq(f(n), n=0..20)]; # N. J. A. Sloane, May 09 2016
    seq(simplify(KummerU(-n, -2*n, 1)), n = 0..16); # Peter Luschny, May 10 2022
  • Mathematica
    Table[(2k)! Hypergeometric1F1[-k, -2k, 1]/k!, {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
  • PARI
    a(n)=sum(k=0,n,(n+k)!/k!/(n-k)!)
    
  • Sage
    A001517 = lambda n: hypergeometric([-n, n+1], [], -1)
    [simplify(A001517(n)) for n in (0..16)] # Peter Luschny, Oct 17 2014

Formula

a(n) = Sum_{k=0..n} (n+k)!/(k!*(n-k)!) = (e/Pi)^(1/2) K_{n+1/2}(1/2).
D-finite with recurrence a(n) = (4*n-2)*a(n-1) + a(n-2), n >= 2.
a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n+k)*binomial(n,k)*A000522(n+k). - Vladeta Jovovic, Sep 30 2006
E.g.f. (for offset 1): exp(x*c(x)), where c(x)=(1-sqrt(1-4*x))/(2*x) (cf. A000108). - Vladimir Kruchinin, Aug 10 2010
G.f.: 1/Q(0), where Q(k) = 1 - x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = (1/n!)*Integral_{x>=0} (x*(1 + x))^n*exp(-x) dx. Expansion of exp(x) in powers of y = x*(1 - x): exp(x) = 1 + y + 3*y^2/2! + 19*y^3/3! + 193*y^4/4! + 2721*y^5/5! + .... - Peter Bala, Dec 15 2013
a(n) = exp(1/2) / sqrt(Pi) * BesselK(n+1/2, 1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) ~ 2^(2*n+1/2) * n^n / exp(n-1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) = hypergeom([-n, n+1], [], -1). - Peter Luschny, Oct 17 2014
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 4^n * hypergeometric1f1(-n; -2*n; 1).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 4*t/(1-t)^2). (End)
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*k!. - Ilya Gutkovskiy, Nov 24 2017
a(n) = KummerU(-n, -2*n, 1). - Peter Luschny, May 10 2022

Extensions

More terms from Vladeta Jovovic, Apr 03 2000
Additional comments from Michael Somos, Jul 15 2002

A002119 Bessel polynomial y_n(-2).

Original entry on oeis.org

1, -1, 7, -71, 1001, -18089, 398959, -10391023, 312129649, -10622799089, 403978495031, -16977719590391, 781379079653017, -39085931702241241, 2111421691000680031, -122501544009741683039, 7597207150294985028449, -501538173463478753560673
Offset: 0

Views

Author

Keywords

Comments

Absolute values give denominators of successive convergents to e using continued fraction 1+2/(1+1/(6+1/(10+1/(14+1/(18+1/(22+1/26...)))))).
Absolute values give number of different arrangements of nonnegative integers on a set of n 6-sided dice such that the dice can add to any integer from 0 to 6^n-1. For example when n=2, there are 7 arrangements that can result in any total from 0 to 35. Cf. A273013. The number of sides on the dice only needs to be the product of two distinct primes, of which 6 is the first example. - Elliott Line, Jun 10 2016
Absolute values give number of Krasner factorizations of (x^(6^n)-1)/(x-1) into n polynomials p_i(x), i=1,2,...,n, satisfying p_i(1)=6. In these expressions 6 can be replaced with any product of two distinct primes (Krasner and Ranulac, 1937). - William P. Orrick, Jan 18 2023
Absolute values give number of pairs (s, b) where s is a covering of the 1 X 2n grid with 1 X 2 dimers and equal numbers of red and blue 1 X 1 monomers and b is a bijection between the red monomers and the blue monomers that does not map adjacent monomers to each other. Ilya Gutkovskiy's formula counts such pairs by an inclusion-exclusion argument. The correspondence with Elliott Line's dice problem is that a dimer corresponds to a die containing an arithmetic progression of length 6 and a pair (r, b(r)), where r is a red monomer and b(r) its image under b, corresponds to a die containing the sum of an arithmetic progression of length 2 and an arithmetic progression of length 3. - William P. Orrick, Jan 19 2023

Examples

			Example from _William P. Orrick_, Jan 19 2023: (Start)
For n=2 the Bessel polynomial is y_2(x) = 1 + 3x + 3x^2 which satisfies y_2(-2) = -7.
The |a(2)|=7 dice pairs are
  {{0,1,2,3,4,5}, {0,6,12,18,24,30}},
  {{0,1,2,18,19,20}, {0,3,6,9,12,15}},
  {{0,1,2,9,10,11}, {0,3,6,18,21,24}},
  {{0,1,6,7,12,13}, {0,2,4,18,20,22}},
  {{0,1,12,13,24,25}, {0,2,4,6,8,10}},
  {{0,1,2,6,7,8}, {0,3,12,15,24,27}},
  {{0,1,4,5,8,9}, {0,2,12,14,24,26}}.
The corresponding Krasner factorizations of (x^36-1)/(x-1) are
  {(x^6-1)/(x-1), (x^36-1)/(x^6-1)},
  {((x^36-1)/(x^18-1))*((x^3-1)/(x-1)), (x^18-1)/(x^3-1)},
  {((x^18-1)/(x^9-1))*((x^3-1)/(x-1)), ((x^36-1)/(x^18-1))*((x^9-1)/(x^3-1))},
  {((x^18-1)/(x^6-1))*((x^2-1)/(x-1)), ((x^36-1)/(x^18-1))*((x^6-1)/(x^2-1))},
  {((x^36-1)/(x^12-1))*((x^2-1)/(x-1)), (x^12-1)/(x^2-1)},
  {((x^12-1)/(x^6-1))*((x^3-1)/(x-1)), ((x^36-1)/(x^12-1))*((x^6-1)/(x^3-1))},
  {((x^12-1)/(x^4-1))*((x^2-1)/(x-1)), ((x^36-1)/(x^12-1))*((x^4-1)/(x^2-1))}.
The corresponding monomer-dimer configurations, with dimers, red monomers, and blue monomers represented by the symbols '=', 'R', and 'B', and bijections between red and blue monomers given as sets of ordered pairs, are
  (==, {}),
  (B=R, {(3,1)}),
  (BBRR, {(3,1),(4,2)}),
  (RBBR, {(1,3),(4,2)}),
  (R=B, {(1,3)}),
  (BRRB, {(2,4),(3,1)}),
  (RRBB, {(1,3),(2,4)}).
(End)
		

References

  • L. Euler, 1737.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See also A033815.
Numerators of the convergents of e are A001517, which has a similar interpretation to a(n) in terms of monomer-dimer configurations, but omitting the restriction that adjacent monomers not be mapped to each other by the bijection.
Polynomial coefficients are in A001498.

Programs

  • Maple
    f:=proc(n) option remember; if n <= 1 then 1 else f(n-2)+(4*n-2)*f(n-1); fi; end;
    [seq(f(n), n=0..20)]; # This is for the unsigned version. - N. J. A. Sloane, May 09 2016
    seq(simplify((-1)^n*KummerU(-n, -2*n, -1)), n = 0..17); # Peter Luschny, May 10 2022
  • Mathematica
    Table[(-1)^k (2k)! Hypergeometric1F1[-k, -2k, -1]/k!, {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
    nxt[{n_,a_,b_}]:={n+1,b,a-2b(2n+1)}; NestList[nxt,{1,1,-1},20][[All,2]] (* Harvey P. Dale, Aug 18 2017 *)
  • PARI
    {a(n)= if(n<0, n=-n-1); sum(k=0, n, (2*n-k)!/ (k!*(n-k)!)* (-1)^(n-k) )} /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n)= local(A); if(n<0, n= -n-1); A= sqrt(1 +4*x +x*O(x^n)); n!*polcoeff( exp((A-1)/2)/A, n)} /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n)= local(A); if(n<0, n= -n-1); n+=2 ; for(k= 1, n, A+= x*O(x^k); A= truncate( (1+x)* exp(A) -1-A) ); A+= x*O(x^n); A-= A^2; -(-1)^n*n!* polcoeff( serreverse(A), n)} /* Michael Somos, Apr 02 2007 */
    
  • Sage
    A002119 = lambda n: hypergeometric([-n, n+1], [], 1)
    [simplify(A002119(n)) for n in (0..17)] # Peter Luschny, Oct 17 2014

Formula

D-finite with recurrence a(n) = -2(2n-1)*a(n-1) + a(n-2). - T. D. Noe, Oct 26 2006
If y = x + Sum_{k>=2} A005363(k)*x^k/k!, then y = x + Sum_{k>=2} a(k-2)(-y)^k/k!. - Michael Somos, Apr 02 2007
a(-n-1) = a(n). - Michael Somos, Apr 02 2007
a(n) = (1/n!)*Integral_{x>=-1} (-x*(1+x))^n*exp(-(1+x)). - Paul Barry, Apr 19 2010
G.f.: 1/Q(0), where Q(k) = 1 - x + 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
Expansion of exp(x) in powers of y = x*(1 + x): exp(x) = 1 + y - y^2/2! + 7*y^3/3! - 71*y^4/4! + 1001*y^5/5! - .... E.g.f.: (1/sqrt(4*x + 1))*exp(sqrt(4*x + 1)/2 - 1/2) = 1 - x + 7*x^2/2! - 71*x^3/3! + .... - Peter Bala, Dec 15 2013
a(n) = hypergeom([-n, n+1], [], 1). - Peter Luschny, Oct 17 2014
a(n) = sqrt(Pi/exp(1)) * BesselI(1/2+n, 1/2) + (-1)^n * BesselK(1/2+n, 1/2) / sqrt(exp(1)*Pi). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ (-1)^n * 2^(2*n+1/2) * n^n / exp(n+1/2). - Vaclav Kotesovec, Jul 22 2015
From G. C. Greubel, Aug 16 2017: (Start)
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; -4*t/(1-t)^2).
E.g.f.: (1+4*t)^(-1/2) * exp((sqrt(1+4*t) - 1)/2). (End)
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*binomial(n+k,k)*k!. - Ilya Gutkovskiy, Nov 24 2017
a(n) = (-1)^n*KummerU(-n, -2*n, -1). - Peter Luschny, May 10 2022

Extensions

More terms from Vladeta Jovovic, Apr 03 2000

A001518 Bessel polynomial y_n(3).

Original entry on oeis.org

1, 4, 37, 559, 11776, 318511, 10522639, 410701432, 18492087079, 943507142461, 53798399207356, 3390242657205889, 233980541746413697, 17551930873638233164, 1421940381306443299981, 123726365104534205331511, 11507973895102987539130504
Offset: 0

Views

Author

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Polynomial coefficients are in A001498.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=3*(2*n-1)*a(n-1)+a(n-2),a(0)=1,a(1)=4},a(n),remember):
    map(f, [$0..60]); # Robert Israel, Aug 06 2015
  • Mathematica
    Table[Sum[(n+k)!*3^k/(2^k*(n-k)!*k!), {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
  • PARI
    x='x+O('x^33); Vec(serlaplace(exp(1/3 - 1/3 * (1-6*x)^(1/2)) / (1-6*x)^(1/2))) \\ Gheorghe Coserea, Aug 04 2015

Formula

y_n(x) = Sum_{k=0..n} (n+k)!*(x/2)^k/((n-k)!*k!).
D-finite with recurrence a(n) = 3(2n-1)*a(n-1) + a(n-2). - T. D. Noe, Oct 26 2006
G.f.: 1/Q(0), where Q(k)= 1 - x - 3*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = exp(1/3)*sqrt(2/(3*Pi))*BesselK(1/2+n,1/3). - Gerry Martens, Jul 22 2015
a(n) ~ sqrt(2) * 6^n * n^n / exp(n-1/3). - Vaclav Kotesovec, Jul 22 2015
E.g.f.: exp(1/3 - 1/3*(1-6*x)^(1/2)) / (1-6*x)^(1/2). (formula due to B. Salvy, see Plouffe link) - Gheorghe Coserea, Aug 06 2015
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 6^n * hypergeometric1f1(-n; -2*n; 2/3).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 6*t/(1-t)^2). (End)

A001516 Bessel polynomial {y_n}''(1).

Original entry on oeis.org

0, 0, 6, 120, 1980, 32970, 584430, 11204676, 233098740, 5254404210, 127921380840, 3350718545460, 94062457204716, 2819367702529560, 89912640142178490, 3040986592542420060, 108752084073199561140, 4101112025363285051526
Offset: 0

Views

Author

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    (As in A001497 define:) f := proc(n) option remember; if n <=1 then (1+x)^n else expand((2*n-1)*x*f(n-1)+f(n-2)); fi; end;
    [seq( subs(x=1,diff(f(n),x$2)),n=0..60)];
  • Mathematica
    Table[Sum[(n+k+2)!/(2^(k+2)*(n-k-2)!*k!), {k,0,n-2}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
    Join[{0, 0}, Table[n*(n - 1)*Pochhammer[1/2, n]*2^n* Hypergeometric1F1[2 - n, -2*n, 2], {n,2,50}]] (* G. C. Greubel, Aug 14 2017 *)
  • PARI
    for(n=0,20, print1(sum(k=0,n-2, (n+k+2)!/(2^(k+2)*(n-k-2)!*k!)), ", ")) \\ G. C. Greubel, Aug 14 2017

Formula

G.f.: 6*x^2*(1-x)^(-5)*hypergeom([5/2,3],[],2*x/(x-1)^2). - Mark van Hoeij, Nov 07 2011
D-finite with recurrence: (n-2)*(n-1)*a(n) = (2*n - 1)*(n^2 - n + 2)*a(n-1) + n*(n+1)*a(n-2). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ 2^(n+1/2) * n^(n+2) / exp(n-1). - Vaclav Kotesovec, Jul 22 2015
a(n) = n*(n - 1)*(1/2){n}*2^n* hypergeometric1F1(2 - n, -2*n, 2), where (a){n} is the Pochhammer symbol. - G. C. Greubel, Aug 14 2017
E.g.f.: (-1)*(1 - 2*x)^(-5/2)*((4 - 14*x + 9*x^2)*sqrt(1 - 2*x) + (2*x^3 - 24*x^2 + 18*x - 4))*exp((1 - sqrt(1 - 2*x))). - G. C. Greubel, Aug 16 2017

A144505 Triangle read by rows: coefficients of polynomials arising from the recurrence A[n](x) = A[n-1]'(x)/(1-x) with A[0] = exp(x).

Original entry on oeis.org

1, 1, -1, 2, 1, -5, 7, -1, 9, -30, 37, 1, -14, 81, -229, 266, -1, 20, -175, 835, -2165, 2431, 1, -27, 330, -2330, 9990, -24576, 27007, -1, 35, -567, 5495, -34300, 137466, -326515, 353522, 1, -44, 910, -11522, 97405, -561386, 2148139, -4976315, 5329837
Offset: 0

Views

Author

N. J. A. Sloane, Dec 14 2008

Keywords

Examples

			The first few polynomials P[n] (n >= 0) are:
  P[0] = 1;
  P[1] = 1;
  P[2] = -x +2;
  P[3] =  x^2 -5*x +7;
  P[4] = -x^3 + 9*x^2 - 30*x +37;
  P[5] =  x^4 -14*x^3 + 81*x^2 - 229*x +266;
  P[6] = -x^5 +20*x^4 -175*x^3 + 835*x^2 -2165*x +2431;
  P[7] =  x^6 -27*x^5 +330*x^4 -2330*x^3 +9990*x^2 -24576*x +27007;
...
Triangle of coefficients begins:
   1;
   1;
  -1,   2;
   1,  -5,    7;
  -1,   9,  -30,     37;
   1, -14,   81,   -229,    266;
  -1,  20, -175,    835,  -2165,    2431;
   1, -27,  330,  -2330,   9990,  -24576,   27007;
  -1,  35, -567,   5495, -34300,  137466, -326515,   353522;
   1, -44,  910, -11522,  97405, -561386, 2148139, -4976315, 5329837;
...
		

Crossrefs

Columns give A001515 (really A144301), A144498, A001514, A144506, A144507.
Row sums give A001147.
Alternating row sums give A043301.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50);
    f:= func< n,x | x^n*(&+[Binomial(n,j)*Factorial(n+j)*(1-1/x)^(n-j)/(2^j*Factorial(n)) : j in [0..n]]) >;
    T:= func< n,k | Coefficient(R!( f(n,x) ), k) >;
    [1] cat [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 02 2023
    
  • Maple
    A[0]:=exp(x);
    P[0]:=1;
    for n from 1 to 12 do
    A[n]:=sort(simplify( diff(A[n-1],x)/(1-x)));
    P[n]:=sort(simplify(A[n]*(1-x)^(2*n-1)/exp(x)));
    t1:=simplify(x^(degree(P[n],x))*subs(x=1/x,P[n]));
    t2:=series(t1,x,2*n+3);
    lprint(P[n]);
    lprint(seriestolist(t2));
    od:
  • Mathematica
    f[n_, x_]:= x^n*Sum[((n+j)!/((n-j)!*j!*2^j))*(1-1/x)^(n-j), {j,0,n}];
    t[n_, k_]:= Coefficient[Series[f[n,x], {x,0,30}], x, k];
    Join[{1}, Table[t[n,k], {n,0,12}, {k,0,n}]//Flatten] (* G. C. Greubel, Oct 02 2023 *)
  • SageMath
    P. = PowerSeriesRing(QQ, 50)
    def f(n,x): return x^n*sum(binomial(n,j)*rising_factorial(n+1,j)*(1-1/x)^(n-j)/2^j for j in range(n+1))
    def T(n,k): return P( f(n,x) ).list()[k]
    [1] + flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 02 2023

Formula

Let A[0](x) = exp(x), A[n](x) = A[n-1]'(x)/(1-x) for n>0 and let P[n](x) = A[n](x)*(1-x)^(2n-1)/exp(x). Row n of triangle gives coefficients of P[n](x) with exponents of x in decreasing order.
From Vladeta Jovovic, Dec 15 2008: (Start)
P[n] = Sum_{k=0..n} ((n+k)!/((n-k)!*k!*2^k)) * (1-x)^(n-k).
E.g.f.: exp((1-x)*(1-sqrt(1-2*y)))/sqrt(1-2*y). (End)

A065920 Bessel polynomial {y_n}'(2).

Original entry on oeis.org

0, 1, 15, 246, 4810, 111315, 2994621, 92069740, 3188772756, 122934101445, 5223324100555, 242563221769506, 12224586738476190, 664572113979550231, 38767776344788218105, 2415639337342677314520, 160131212043826343202856
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n+k+1)!/(2*(n-k-1)!*k!), {k,0,n-1}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
    Join[{0}, Table[2*n*Pochhammer[1/2, n]*4^(n - 1)* Hypergeometric1F1[1 - n, -2*n, 1], {n,1,50}]] (* G. C. Greubel, Aug 14 2017 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n-1, (n+k+1)!/(2*(n-k-1)!*k!)), ", ")) \\ G. C. Greubel, Aug 14 2017

Formula

Recurrence: (n-1)^2*a(n) = (2*n - 1)*(2*n^2 - 2*n + 1)*a(n-1) + n^2*a(n-2). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ 2^(2*n-1/2) * n^(n+1) / exp(n-1/2). - Vaclav Kotesovec, Jul 22 2015
From G. C. Greubel, Aug 14 2017: (Start)
a(n) = 2*n*(1/2)_{n}*4^(n - 1)* hypergeometric1f1(1 - n, -2*n, 1).
E.g.f.: ((1 - 4*x)^(3/2) + 2*x*(1 - 4*x)^(1/2) + 8*x - 1)*exp((1 - sqrt(1 - 4*x))/2)/(4*(1 - 4*x)^(3/2)). (End)
G.f.: (t/(1-t)^3)*hypergeometric2f0(2,3/2; - ; 4*t/(1-t)^2). - G. C. Greubel, Aug 16 2017

A065921 Bessel polynomial {y_n}'(3).

Original entry on oeis.org

0, 1, 21, 501, 14455, 496770, 19911486, 913839031, 47303189361, 2727741976785, 173455231572865, 12060173714421756, 910301022642409476, 74134150415555474881, 6479678618270868170265, 605042444997867941987385, 60110944381660549838273911
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n+k+1)!*3^k/((n-k-1)!*k!*2^(k+1)), {k,0,n-1}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
    Join[{0}, Table[2*n*Pochhammer[1/2, n]*6^(n - 1)* Hypergeometric1F1[1 - n, -2*n, 2/3], {n,1,50}]] (* G. C. Greubel, Aug 14 2017 *)
  • PARI
    for(n=0,50, print1(sum(k=0,n-1, (n+k+1)!*3^k/((n-k-1)!*k! *2^(k+1))), ", ")) \\ G. C. Greubel, Aug 14 2017

Formula

Recurrence: (n-1)^2*a(n) = (2*n - 1)*(3*n^2 - 3*n + 1)*a(n-1) + n^2*a(n-2). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ 2^(n+1/2) * 3^(n-1) * n^(n+1) / exp(n-1/3). - Vaclav Kotesovec, Jul 22 2015
From G. C. Greubel, Aug 14 2017: (Start)
a(n) = 2*n*(1/2)_{n}*6^(n - 1)* hypergeometric1f1(1 - n, -2*n, 2/3).
E.g.f.: ((1 - 6*x)^(3/2) + 3*x*(1 - 6*x)^(1/2) + 15*x - 1) * exp((1 - sqrt(1 - 6*x))/3)/(9*(1 - 6*x)^(3/2)). (End)
G.f.: (t/(1-t)^3)*hypergeometric2f0(2,3/2; - ; 6*t/(1-t)^2). - G. C. Greubel, Aug 16 2017
Showing 1-10 of 14 results. Next