cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A272648 a(n) = A002119(n) mod 7.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6, 0, 6, 6, 1, 1, 0, 1, 0, 1, 1, 6, 6, 0, 6
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2016

Keywords

Comments

Periodic with period 14.

Crossrefs

Programs

  • GAP
    b:=[1,-1];; for n in [3..95] do b[n]:=-2*(2*n-3)*b[n-1]+b[n-2]; od; a:=List(b,AbsInt) mod 7; # Muniru A Asiru, Sep 20 2018
  • Maple
    f:=proc(n) option remember; if n = 0 then 1 elif n=1 then 1 else f(n-2)+(4*n-2)*f(n-1); fi; end;
    [seq(f(n) mod 7, n=0..120)];
  • Mathematica
    PadRight[{},120,{1,1,0,1,0,1,1,6,6,0,6,0,6,6}] (* Harvey P. Dale, Jun 07 2016 *)
  • PARI
    Vec((1+x+x^3+x^5+x^6)*(1+6*x^7)/((1-x)*(1+x)*(1-x+x^2-x^3+x^4-x^5+x^6)*(1+x+x^2+x^3+x^4+x^5+x^6)) + O(x^50)) \\ Colin Barker, May 10 2016
    

Formula

G.f.: (1+x+x^3+x^5+x^6)*(1+6*x^7) / ((1-x)*(1+x)*(1-x+x^2-x^3+x^4-x^5+x^6)*(1+x+x^2+x^3+x^4+x^5+x^6)). - Colin Barker, May 10 2016
a(n) = (-m^6+18*m^5-122*m^4+384*m^3-549*m^2+270*m+24)*(7-5*(-1)^floor(n/7))/48, where m = (n mod 7). - Luce ETIENNE, Sep 21 2018

A001498 Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 15, 15, 1, 10, 45, 105, 105, 1, 15, 105, 420, 945, 945, 1, 21, 210, 1260, 4725, 10395, 10395, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 1, 45, 990, 13860, 135135, 945945, 4729725, 16216200, 34459425, 34459425
Offset: 0

Views

Author

Keywords

Comments

The row polynomials with exponents in increasing order (e.g., third row: 1+3x+3x^2) are Grosswald's y_{n}(x) polynomials, p. 18, Eq. (7).
Also called Bessel numbers of first kind.
The triangle a(n,k) has factorization [C(n,k)][C(k,n-k)]Diag((2n-1)!!) The triangle a(n-k,k) is A100861, which gives coefficients of scaled Hermite polynomials. - Paul Barry, May 21 2005
Related to k-matchings of the complete graph K_n by a(n,k)=A100861(n+k,k). Related to the Morgan-Voyce polynomials by a(n,k)=(2k-1)!!*A085478(n,k). - Paul Barry, Aug 17 2005
Related to Hermite polynomials by a(n,k)=(-1)^k*A060821(n+k, n-k)/2^n. - Paul Barry, Aug 28 2005
The row polynomials, the Bessel polynomials y(n,x):=Sum_{m=0..n} (a(n,m)*x^m) (called y_{n}(x) in the Grosswald reference) satisfy (x^2)*(d^2/dx^2)y(n,x) + 2*(x+1)*(d/dx)y(n,x) - n*(n+1)*y(n,x) = 0.
a(n-1, m-1), n >= m >= 1, enumerates unordered n-vertex forests composed of m plane (aka ordered) increasing (rooted) trees. Proof from the e.g.f. of the first column Y(z):=1-sqrt(1-2*z) (offset 1) and the Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0)=0, with out-degree o.g.f. phi(w)=1/(1-w). See their remark on p. 28 on plane recursive trees. For m=1 see the D. Callan comment on A001147 from Oct 26 2006. - Wolfdieter Lang, Sep 14 2007
The asymptotic expansions of the higher order exponential integrals E(x,m,n), see A163931 for information, lead to the Bessel numbers of the first kind in an intriguing way. For the first four values of m these asymptotic expansions lead to the triangles A130534 (m=1), A028421 (m=2), A163932 (m=3) and A163934 (m=4). The o.g.f.s. of the right hand columns of these triangles in their turn lead to the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4). The row sums of these four triangles lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four right hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next four right hand columns of A001498. So one by one all columns of the triangle of coefficients of Bessel polynomials appear. - Johannes W. Meijer, Oct 07 2009
a(n,k) also appear as coefficients of (n+1)st degree of the differential operator D:=1/t d/dt, namely D^{n+1}= Sum_{k=0..n} a(n,k) (-1)^{n-k} t^{1-(n+k)} (d^{n+1-k}/dt^{n+1-k}. - Leonid Bedratyuk, Aug 06 2010
a(n-1,k) are the coefficients when expanding (xI)^n in terms of powers of I. Let I(f)(x) := Integral_{a..x} f(t) dt, and (xI)^n := x Integral_{a..x} [ x_{n-1} Integral_{a..x_{n-1}} [ x_{n-2} Integral_{a..x_{n-2}} ... [ x_1 Integral_{a..x_1} f(t) dt ] dx_1 ] .. dx_{n-2} ] dx_{n-1}. Then: (xI)^n = Sum_{k=0..n-1} (-1)^k * a(n-1,k) * x^(n-k) * I^(n+k)(f)(x) where I^(n) denotes iterated integration. - Abdelhay Benmoussa, Apr 11 2025

Examples

			The triangle a(n, k), n >= 0, k = 0..n, begins:
  1
  1  1
  1  3   3
  1  6  15    15
  1 10  45   105    105
  1 15 105   420    945    945
  1 21 210  1260   4725  10395   10395
  1 28 378  3150  17325  62370  135135   135135
  1 36 630  6930  51975 270270  945945  2027025  2027025
  1 45 990 13860 135135 945945 4729725 16216200 34459425 34459425
  ...
And the first few Bessel polynomials are:
  y_0(x) = 1,
  y_1(x) = x + 1,
  y_2(x) = 3*x^2 + 3*x + 1,
  y_3(x) = 15*x^3 + 15*x^2 + 6*x + 1,
  y_4(x) = 105*x^4 + 105*x^3 + 45*x^2 + 10*x + 1,
  y_5(x) = 945*x^5 + 945*x^4 + 420*x^3 + 105*x^2 + 15*x + 1,
  ...
Tree counting: a(2,1)=3 for the unordered forest of m=2 plane increasing trees with n=3 vertices, namely one tree with one vertex (root) and another tree with two vertices (a root and a leaf), labeled increasingly as (1, 23), (2,13) and (3,12). - _Wolfdieter Lang_, Sep 14 2007
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Cf. A001497 (same triangle but rows read in reverse order). Other versions of this same triangle are given in A144331, A144299, A111924 and A100861.
Columns from left edge include A000217, A050534.
Columns 1-6 from right edge are A001147, A001879, A000457, A001880, A001881, A038121.
Bessel polynomials evaluated at certain x are A001515 (x=1, row sums), A000806 (x=-1), A001517 (x=2), A002119 (x=-2), A001518 (x=3), A065923 (x=-3), A065919 (x=4). Cf. A043301, A003215.
Cf. A245066 (central terms). A113025 (y_n(2*x)).

Programs

  • Haskell
    a001498 n k = a001498_tabl !! n !! k
    a001498_row n = a001498_tabl !! n
    a001498_tabl = map reverse a001497_tabl
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    /* As triangle: */ [[Factorial(n+k)/(2^k*Factorial(n-k)*Factorial(k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
  • Maple
    Bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end; # explicit Bessel polynomials
    Bessel := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*Bessel(n-1)+Bessel(n-2); fi; end; # recurrence for Bessel polynomials
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
    f := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*f(n-1)+f(n-2); fi; end;
    # Alternative:
    T := (n,k) -> pochhammer(n+1,k)*binomial(n,k)/2^k:
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 11 2018
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
    else (n - k + 1)* T(n, k - 1) + T(n - 1, k) fi fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Oct 02 2023
  • Mathematica
    max=50; Flatten[Table[(n+k)!/(2^k*(n-k)!*k!), {n, 0, Sqrt[2 max]//Ceiling}, {k, 0, n}]][[1 ;; max]] (* Jean-François Alcover, Mar 20 2011 *)
  • PARI
    {T(n,k)=if(k<0||k>n, 0, binomial(n, k)*(n+k)!/2^k/n!)} /* Michael Somos, Oct 03 2006 */
    
  • PARI
    A001497_ser(N,t='t) = {
      my(x='x+O('x^(N+2)));
      serlaplace(deriv(exp((1-sqrt(1-2*t*x))/t),'x));
    };
    concat(apply(Vecrev, Vec(A001497_ser(9)))) \\ Gheorghe Coserea, Dec 27 2017
    

Formula

a(n, k) = (n+k)!/(2^k*(n-k)!*k!) (see Grosswald and Riordan). - Ralf Stephan, Apr 20 2004
a(n, 0)=1; a(0, k)=0, k > 0; a(n, k) = a(n-1, k) + (n-k+1) * a(n, k-1) = a(n-1, k) + (n+k-1) * a(n-1, k-1). - Len Smiley
a(n, m) = A001497(n, n-m) = A001147(m)*binomial(n+m, 2*m) for n >= m >= 0, otherwise 0.
G.f. for m-th column: (A001147(m)*x^m)/(1-x)^(2*m+1), m >= 0, where A001147(m) = double factorials (from explicit a(n, m) form).
Row polynomials y_n(x) are given by D^(n+1)(exp(t)) evaluated at t = 0, where D is the operator 1/(1-t*x)*d/dt. - Peter Bala, Nov 25 2011
G.f.: conjecture: T(0)/(1-x), where T(k) = 1 - x*y*(k+1)/(x*y*(k+1) - (1-x)^2/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
Recurrence from Grosswald, p. 18, eq. (5), for the row polynomials: y_n(x) = (2*n-1)*x*y_{n-1} + y_{n-2}(x), y_{-1}(x) = 1 = y_{0} = 1, n >= 1. This becomes, for n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = (2*n-1)*a(n-1, k-1) + a(n-2, k). Compare with the above given recurrences. - Wolfdieter Lang, May 11 2018
T(n, k) = Pochhammer(n+1,k)*binomial(n,k)/2^k = A113025(n,k)/2^k. - Peter Luschny, May 11 2018
a(n, k) = Sum_{i=0..min(n-1, k)} (n-i)(k-i) * a(n-1, i) where x(n) = x*(x-1)*...*(x-n+1) is the falling factorial, this equality follows directly from the operational formula we wrote in Apr 11 2025.- Abdelhay Benmoussa, May 18 2025

A001517 Bessel polynomials y_n(x) (see A001498) evaluated at 2.

Original entry on oeis.org

1, 3, 19, 193, 2721, 49171, 1084483, 28245729, 848456353, 28875761731, 1098127402131, 46150226651233, 2124008553358849, 106246577894593683, 5739439214861417731, 332993721039856822081, 20651350143685984386753
Offset: 0

Views

Author

Keywords

Comments

Numerators of successive convergents to e using continued fraction 1 + 2/(1 + 1/(6 + 1/(10 + 1/(14 + 1/(18 + 1/(22 + 1/26 + ...)))))).
Number of ways to use the elements of {1,...,k}, n <= k <= 2n, once each to form a collection of n lists, each having length 1 or 2. - Bob Proctor, Apr 18 2005, Jun 26 2006

References

  • L. Euler, 1737.
  • I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, 6th ed., Section 0.126, p. 2.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A080893.
a(n) = A099022(n)/n!.
Partial sums: A105747.
Replace "lists" with "sets" in comment: A001515.

Programs

  • Maple
    A:= gfun:-rectoproc({a(n) = (4*n-2)*a(n-1) + a(n-2),a(0)=1,a(1)=3},a(n),remember):
    map(A, [$0..20]); # Robert Israel, Jul 22 2015
    f:=proc(n) option remember; if n = 0 then 1 elif n=1 then 3 else f(n-2)+(4*n-2)*f(n-1); fi; end;
    [seq(f(n), n=0..20)]; # N. J. A. Sloane, May 09 2016
    seq(simplify(KummerU(-n, -2*n, 1)), n = 0..16); # Peter Luschny, May 10 2022
  • Mathematica
    Table[(2k)! Hypergeometric1F1[-k, -2k, 1]/k!, {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
  • PARI
    a(n)=sum(k=0,n,(n+k)!/k!/(n-k)!)
    
  • Sage
    A001517 = lambda n: hypergeometric([-n, n+1], [], -1)
    [simplify(A001517(n)) for n in (0..16)] # Peter Luschny, Oct 17 2014

Formula

a(n) = Sum_{k=0..n} (n+k)!/(k!*(n-k)!) = (e/Pi)^(1/2) K_{n+1/2}(1/2).
D-finite with recurrence a(n) = (4*n-2)*a(n-1) + a(n-2), n >= 2.
a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n+k)*binomial(n,k)*A000522(n+k). - Vladeta Jovovic, Sep 30 2006
E.g.f. (for offset 1): exp(x*c(x)), where c(x)=(1-sqrt(1-4*x))/(2*x) (cf. A000108). - Vladimir Kruchinin, Aug 10 2010
G.f.: 1/Q(0), where Q(k) = 1 - x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = (1/n!)*Integral_{x>=0} (x*(1 + x))^n*exp(-x) dx. Expansion of exp(x) in powers of y = x*(1 - x): exp(x) = 1 + y + 3*y^2/2! + 19*y^3/3! + 193*y^4/4! + 2721*y^5/5! + .... - Peter Bala, Dec 15 2013
a(n) = exp(1/2) / sqrt(Pi) * BesselK(n+1/2, 1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) ~ 2^(2*n+1/2) * n^n / exp(n-1/2). - Vaclav Kotesovec, Mar 15 2014
a(n) = hypergeom([-n, n+1], [], -1). - Peter Luschny, Oct 17 2014
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 4^n * hypergeometric1f1(-n; -2*n; 1).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 4*t/(1-t)^2). (End)
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*k!. - Ilya Gutkovskiy, Nov 24 2017
a(n) = KummerU(-n, -2*n, 1). - Peter Luschny, May 10 2022

Extensions

More terms from Vladeta Jovovic, Apr 03 2000
Additional comments from Michael Somos, Jul 15 2002

A033815 Number of standard permutations of [ a_1..a_n b_1..b_n ] (b_i is not immediately followed by a_i, for all i).

Original entry on oeis.org

1, 1, 14, 426, 24024, 2170680, 287250480, 52370755920, 12585067447680, 3854801333416320, 1465957162768492800, 677696237345719468800, 374281829360322587827200, 243388909697235614324812800, 184070135024053703140543027200, 160192129141963141211280644352000
Offset: 0

Views

Author

Keywords

Comments

Also turns up as the solution to Problem #18, p. 326 of Alan Tucker's Applied Combinatorics, 4th ed, Wiley NY 2002 [Tucker's `n' is the `2n' here]. - John L Leonard, Sep 15 2003
Number of acyclic orientations of the Turán graph T(2n,n). - Alois P. Heinz, Jan 13 2016
n-th term of the n-th forward differences of n!. - Alois P. Heinz, Feb 22 2019

References

  • R. P. Stanley, Enumerative Combinatorics I, Chap.2, Exercise 10, p. 89.

Crossrefs

Main diagonal of array in A068106 and of A047920.
Column k=2 of A372326.

Programs

  • Haskell
    a033815 n = a116854 (2 * n + 1) (n + 1)
    -- Reinhard Zumkeller, Aug 31 2014
  • Maple
    A033815 := proc(n) local i; add(binomial(n, i)*(-1)^i*(2*n - i)!, i = 0 .. n) end;
    # second Maple program:
    A:= proc(n, k) A(n, k):= `if`(k=0, n!, A(n+1, k-1) -A(n, k-1)) end:
    a:= n-> A(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 22 2019
  • Mathematica
    a[n_] := (2n)!*Hypergeometric1F1[-n, -2n, -1]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 13 2012, after Vladimir Reshetnikov *)

Formula

a(n) = A002119(n)*n!*(-1)^n.
D-finite with recurrence a(n) = 2n*(2n-1)*a(n-1) + n*(n-1)*a(n-2).
a(n) = Sum_{i=0..n} binomial(n, i)*(-1)^i*(2*n-i)!.
From John L Leonard, Sep 15 2003: (Start)
a(n) = Sum_{i=0..n} C(n, i)*(2n-i)!*Sum_{j=0..2n-i} (-1)^j/j!.
a(n) = n!*Sum_{i=0..n} C(n, i)*n!/(n-i)!*Sum_{j=0..n-i} (-1)^j*C(n-i, j)*(n-j)!/i!. (End)
a(n) = Sum_{k=0..n} binomial(n,k)*A000166(n+k). - Vladeta Jovovic, Sep 04 2006
a(n) = A116854(2*n+1,n+1). - Reinhard Zumkeller, Aug 31 2014
a(n) = A267383(2n,n). - Alois P. Heinz, Jan 13 2016
a(n) ~ sqrt(Pi) * 2^(2*n + 1) * n^(2*n + 1/2) / exp(2*n + 1/2). - Vaclav Kotesovec, Feb 18 2017
a(n) = n!*exp(-1/2)*((-1)^n * BesselI(n+1/2,1/2)*Pi^(1/2) + BesselK(n+1/2,1/2)/Pi^(1/2) ). - Mark van Hoeij, Jul 15 2022

A336114 The hafnian of a symmetric Toeplitz matrix of order 2*n, n>=2 with the first row (0,1,2,...,2,1); a(0)=a(1)=1.

Original entry on oeis.org

1, 1, 6, 64, 930, 17088, 380870, 9992064, 301738626, 10310669440, 393355695942, 16573741095360, 764401360062626, 38304552622588224, 2072335759298438790, 120390122318741003008, 7474705606285243345410, 493940966313183768532224, 34613731176130328980714886
Offset: 0

Views

Author

Dmitry Efimov, Jul 21 2020

Keywords

Comments

Number of perfect matchings of a chord diagram with 2*n vertices, where neighboring vertices are joined by one chord, and any other pair of vertices is joined by two chords.

Examples

			A symmetric 4x4 Toeplitz matrix A with the first row (0,1,2,1) has the form:
0 1 2 1
1 0 1 2
2 1 0 1
1 2 1 0.
Its hafnian equals Hf(A) = a12*a34+a13*a24+a14*a23 = 1*1+2*2+1*1 = 6 = a(2).
		

Crossrefs

Programs

  • Mathematica
    Join[{1,1},Table[2 HypergeometricU[n,1+2 n,-1],{n,2,16}]] (* Stefano Spezia, Jul 22 2020 *)

Formula

a(n) = 2*n*Sum_{k=0..n} (-1)^(n-k)*(n+k-1)!/(k!*(n-k)!), n>=2.
D-finite with recurrence a(n+1) = (4*n+3)*a(n)-(4*n-7)*a(n-1)-a(n-2), n>=4.
D-finite with recurrence a(n+1) = (8*n^2*a(n)+(2*n+1)*a(n-1))/(2*n-1), n>=3.
a(n) = |A002119(n)|-|A002119(n-1)|, n>=2.
a(n) ~ (2*n)!/(sqrt(e)*n!).
a(n) = U(n,1+2*n,-1) for n >= 2, where U(a,b,c) is the confluent hypergeometric function of the second kind. - Stefano Spezia, Jul 22 2020

A336286 The hafnian of a symmetric Toeplitz matrix of order 2*n, n>=2 with the first row (0,1,2,...,2,0); a(0)=a(1)=1.

Original entry on oeis.org

1, 1, 5, 57, 859, 16087, 362781, 9593105, 291347603, 9998539791, 382732896853, 16169762600329, 747423640472235, 37523173542935207, 2033249827596197549, 118278700627740322977, 7352204062275501662371, 486343759162888783503775, 34112193002666850227154213
Offset: 0

Views

Author

Dmitry Efimov, Jul 16 2020

Keywords

Comments

Number of perfect matchings of an arc diagram with 2*n vertices, where neighboring vertices are joined by one arc, the vertices 1 and 2*n are not adjacent if n>=2, and all other pairs of vertices are joined by two arcs.

Examples

			A symmetric 4 X 4 Toeplitz matrix A with the first row (0,1,2,0) has the form:
  0 1 2 0
  1 0 1 2
  2 1 0 1
  0 2 1 0.
Its hafnian equals Hf(A) = a12*a34 + a13*a24 + a14*a23 = 1*1 + 2*2 + 0*1 = 5 = a(2).
		

Crossrefs

Programs

  • Maple
    [1,1,seq(add((-1)^(n-k-1)*(n+k-1)!*(-3*n+k)/(k!*(n-k)!),k=0..n),n=2..32)] # Georg Fischer, Jun 05 2021
  • Mathematica
    Join[{1,1},RecurrenceTable[{a[n+1] == (4*n+4)*a[n]-(8*n-13)*a[n-1]-2*a[n-2], a[2]==5, a[3]==57, a[4]==859}, a[n], {n,2,32}]] (* Georg Fischer, Jun 05 2021 *)

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*(n+k-1)!*(3*n-k)/(k!*(n-k)!), n>=2.
D-finite with recurrence a(n+1) = (4n+4)*a(n) - (8n-13)*a(n-1) - 2*a(n-2), n>=4.
D-finite with recurrence a(n+1) = ((32*n^2-12*n+2)*a(n) + (8*n+1)*a(n-1))/(8*n-7), n>=3.
a(n) = |A002119(n)| - 2*|A002119(n-1)|, n>=2.
a(n) ~ (2*n)!/sqrt(e)*n!.

A113025 Triangle of integer coefficients of polynomials P(n,x) of degree n, and falling powers of x, arising in diagonal Padé approximation of exp(x).

Original entry on oeis.org

1, 1, 2, 1, 6, 12, 1, 12, 60, 120, 1, 20, 180, 840, 1680, 1, 30, 420, 3360, 15120, 30240, 1, 42, 840, 10080, 75600, 332640, 665280, 1, 56, 1512, 25200, 277200, 1995840, 8648640, 17297280, 1, 72, 2520, 55440, 831600, 8648640, 60540480, 259459200
Offset: 0

Views

Author

Benoit Cloitre, Jan 03 2006

Keywords

Comments

exp(x) is well approximated by P(n,x)/P(n,-x). (P(n,1)/P(n,-1))_{n>=0} is a sequence of convergents to e: i.e., P(n,1) = A001517(n) and P(n,-1) = abs(A002119(n)).
From Roger L. Bagula, Feb 15 2009: (Start)
The row polynomials in rising powers of x are y_n(2*x) = Sum_{k=0..n} binomial(n+k, 2*k)*((2*k)!/k!)*x^k, for n >= 0, with the Bessel polynomials y_n(x) of Krall and Frink, eq. (3), (see also Grosswald, p. 18, eq. (7) and Riordan, p. 77). For the coefficients see A001498. [Edited by Wolfdieter Lang, May 11 2018]
P(n, x) = Sum_{k=0..n} (n+k)!/(k!*(n-k)!)*x^(n-k).
Row sums are A001517. (End)

Examples

			P(3,x) = x^3 + 12*x^2 + 60*x + 120.
y_3(2*x) = 1 + 12*x + 60*x^2 + 120*x^3. (Bessel with x -> 2*x).
From _Roger L. Bagula_, Feb 15 2009: (Start)
{1},
{1, 2},
{1, 6, 12},
{1, 12, 60, 120},
{1, 20, 180, 840, 1680},
{1, 30, 420, 3360, 15120, 30240},
{1, 42, 840, 10080, 75600, 332640, 665280},
{1, 56, 1512, 25200, 277200, 1995840, 8648640, 17297280},
{1, 72, 2520, 55440, 831600, 8648640, 60540480, 259459200, 518918400},
{1, 90, 3960, 110880, 2162160, 30270240, 302702400, 2075673600, 8821612800, 17643225600},
{1, 110, 5940, 205920, 5045040, 90810720, 1210809600, 11762150400, 79394515200, 335221286400, 670442572800} (End)
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p.77, 10. [From Roger L. Bagula, Feb 15 2009]

Crossrefs

Cf. A001498, A001517, A303986 (signed version).

Programs

  • Maple
    T := (n, k) -> pochhammer(n+1, k)*binomial(n, k):
    seq(seq(T(n, k), k=0..n), n=0..9); # Peter Luschny, May 11 2018
  • Mathematica
    L[n_, m_] = (n + m)!/((n - m)!*m!);
    Table[Table[L[n, m], {m, 0, n}], {n, 0, 10}];
    Flatten[%] (* Roger L. Bagula, Feb 15 2009 *)
    P[x_, n_] := Sum[ (2*n - k)!/(k!*(n - k)!)*x^(k), {k, 0, n}]; Table[Reverse[CoefficientList[P[x, n], x]], {n,0,10}] // Flatten (* G. C. Greubel, Aug 15 2017 *)
  • PARI
    T(n,k)=(n+k)!/k!/(n-k)!

Formula

From Wolfdieter Lang, May 11 2018: (Start)
T(n, k) = binomial(n+k, 2*k)*(2*k)!/k! = (n+k)!/((n-k)!*k!), n >= 0, k = 0..n. (see the R. L. Baluga comment above).
Recurrence (adapted from A001498, see the Grosswald reference): For n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = 2*(2*n-1)*a(n-1, k-1) + a(n-2, k).
(End)
T(n, k) = Pochhammer(n+1, k)*binomial(n, k). # Peter Luschny, May 11 2018

A060475 Triangular array formed from successive differences of factorial numbers, then with factorials removed.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 2, 3, 2, 1, 3, 7, 11, 9, 1, 4, 13, 32, 53, 44, 1, 5, 21, 71, 181, 309, 265, 1, 6, 31, 134, 465, 1214, 2119, 1854, 1, 7, 43, 227, 1001, 3539, 9403, 16687, 14833, 1, 8, 57, 356, 1909, 8544, 30637, 82508, 148329, 133496, 1, 9, 73, 527, 3333, 18089, 81901, 296967, 808393, 1468457, 1334961
Offset: 0

Views

Author

Henry Bottomley, Mar 16 2001

Keywords

Comments

T(n,k) is also the number of partial bijections (of an n-element set) with a fixed domain of size k and without fixed points. Equivalently, T(n,k) is the number of partial derangements with a fixed domain of size k in the symmetric inverse semigroup (monoid), I sub n. - Abdullahi Umar, Sep 14 2008

Examples

			Triangle begins
  1,
  1,  0,
  1,  1,  1,
  1,  2,  3,  2,
  1,  3,  7, 11,  9,
  1,  4, 13, 32, 53, 44,
  ...
		

Crossrefs

Columns include A000012, A001477, A002061.
Diagonals include A000166, A000255, A000153, A000261, A001909, A001910.
Main diagonal is abs of A002119.
Similar to A076731.
Row sums equal A003470. - Johannes W. Meijer, Jul 27 2011

Programs

  • Magma
    [[Factorial(k)*(&+[(-1)^j*Binomial(n-j, k-j)/Factorial(j): j in [0..k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 04 2019
    
  • Maple
    A060475 := proc(n,k): k! * add(binomial(n-j,k-j)*(-1)^j/j!, j=0..k) end:
    seq(seq(A060475(n,k), k=0..n), n=0..7); # Johannes W. Meijer, Jul 27 2011
    T := (n,k) -> KummerU(-k, -n, -1):
    seq(seq(simplify(T(n, k)), k = 0..n), n = 0..10); # Peter Luschny, Jul 07 2022
  • Mathematica
    t[n_, k_] := k!*Sum[Binomial[n - j, k - j]*(-1)^j/j!, {j, 0, k}]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Aug 08 2011 *)
  • PARI
    {T(n,k) = k!*sum(j=0,k, (-1)^j*binomial(n-j, k-j)/j!)};
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Mar 04 2019
    
  • Sage
    [[factorial(k)*sum((-1)^j*binomial(n-j, k-j)/factorial(j) for j in (0..k)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 04 2019

Formula

T(n,k) = A047920(n,k)/(n-k)! = (n-1)*T(n-1,k-1) + (k-1)*T(n-2,k-2) = (n-k+1)*T(n, k-1) - T(n-1,k-1).
From Abdullahi Umar, Sep 14 2008: (Start)
T(n,k) = k! * Sum_{j=0..k} C(n-j,k-j)*(-1)^j/j!.
C(n,k)*T(n,k) = A144089(n, k). (End)
T(n,k) = A076732(n+1,k+1)/(k+1). - Johannes W. Meijer, Jul 27 2011
E.g.f. as a square array: A(x,y) = exp(-x)/(1 - x - y) = (1 + y + y^2 + y^3 + ...) + (y + 2*y^2 + 3*y^3 + 4*y^4 + ...)*x + (1 + 3*y + 7*y^2 + 13*y^3 + ...)*x^2/2! + (2 + 11*y + 32*y^2 + 71*y^3 + ...)*x^3/3! + .... Observe that (1 - y)*A(x*(1 - y),y) = exp(x*(y - 1))/(1 - x) is the e.g.f. for A008290. - Peter Bala, Sep 25 2013
T(n, k) = KummerU(-k, -n, -1). - Peter Luschny, Jul 07 2022

A131514 Number of ways to design a set of three n-sided dice (using nonnegative integers) such that summing the faces can give any integer from 0 to n^3 - 1.

Original entry on oeis.org

1, 1, 1, 15, 1, 71, 1, 280, 15, 71, 1, 3660, 1, 71, 71, 5775, 1, 3660, 1, 3660, 71, 71, 1, 160440, 15, 71, 280, 3660, 1, 20365, 1, 126126, 71, 71, 71, 415185, 1, 71, 71, 160440, 1, 20365, 1, 3660, 3660, 71, 1, 6387150, 15, 3660, 71, 3660, 1, 160440, 71, 160440
Offset: 1

Views

Author

H.B. Wassenaar (towr(AT)ai.rug.nl), Aug 14 2007

Keywords

Comments

Also the number of ways to factor (x^(n^3)-1)/(x-1) into p(x)*q(x)*r(x), such that p(x),q(x),r(x) are polynomials with exactly n terms and all coefficients +1 (and all exponents nonnegative). (Krasner and Ranulac, 1937)
a(n) depends only on the prime signature of n. Hence a(n) will be 1 for all primes, 15 for all squares of primes, 71 for all products of distinct primes, and so on. - William P. Orrick, Jan 26 2023

Examples

			a(4)=15 because we can choose any of the following 15 configurations for our three dice:
  [ {0, 1,  2,  3}, {0, 4,  8, 12}, {0, 16, 32, 48} ],
  [ {0, 1,  2,  3}, {0, 4, 16, 20}, {0,  8, 32, 40} ],
  [ {0, 1,  2,  3}, {0, 4, 32, 36}, {0,  8, 16, 24} ],
  [ {0, 1,  4,  5}, {0, 2,  8, 10}, {0, 16, 32, 48} ],
  [ {0, 1,  4,  5}, {0, 2, 16, 18}, {0,  8, 32, 40} ],
  [ {0, 1,  4,  5}, {0, 2, 32, 34}, {0,  8, 16, 24} ],
  [ {0, 1,  8,  9}, {0, 2,  4,  6}, {0, 16, 32, 48} ],
  [ {0, 1,  8,  9}, {0, 2, 16, 18}, {0,  4, 32, 36} ],
  [ {0, 1,  8,  9}, {0, 2, 32, 34}, {0,  4, 16, 20} ],
  [ {0, 1, 16, 17}, {0, 2,  4,  6}, {0,  8, 32, 40} ],
  [ {0, 1, 16, 17}, {0, 2,  8, 10}, {0,  4, 32, 36} ],
  [ {0, 1, 16, 17}, {0, 2, 32, 34}, {0,  4,  8, 12} ],
  [ {0, 1, 32, 33}, {0, 2,  4,  6}, {0,  8, 16, 24} ],
  [ {0, 1, 32, 33}, {0, 2,  8, 10}, {0,  4, 16, 20} ],
  [ {0, 1, 32, 33}, {0, 2, 16, 18}, {0,  4,  8, 12} ].
		

Crossrefs

Programs

  • SageMath
    @cached_function
    def R3(i,j,k):
        if i > 1 and j==1 and k==1:
            return(1)
        elif j > 1 or k > 1:
            divList = divisors(i)[:-1]
            return(sum(G3(d,j,k) for d in divList) + sum(B3(d,j,k) for d in divList))
    @cached_function
    def G3(i,j,k):
        if i==1 and j > 1 and k==1:
            return(1)
        elif i > 1 or k > 1:
            divList = divisors(j)[:-1]
            return(sum(R3(i,d,k) for d in divList) + sum(B3(i,d,k) for d in divList))
    @cached_function
    def B3(i,j,k):
        if i==1 and j==1 and k > 1:
            return(1)
        elif i > 1 or j > 1:
            divList = divisors(k)[:-1]
            return(sum(R3(i,j,d) for d in divList) + sum(G3(i,j,d) for d in divList))
    def a3(n):
        if n == 1:
            return(1)
        else:
            return(R3(n,n,n) / 2) # William P. Orrick, Jan 26 2023

Formula

Recurrence: a(1) = 1. For n > 1, a(n) = r(n,n,n) / 2 where r(i,1,1) = g(1,j,1) = b(1,1,k) = 1 for all i, j, k > 1, r(i,j,k) = Sum_{d|i,dWilliam P. Orrick, Jan 26 2023

Extensions

Terms a(16) and beyond from William P. Orrick, Jan 26 2023

A079165 a(n) = (4n-2)*a(n-1)+a(n-2) with a(0)=1 and a(1)=2.

Original entry on oeis.org

1, 2, 13, 132, 1861, 33630, 741721, 19318376, 580293001, 19749280410, 751052948581, 31563973120812, 1452693816505933, 72666254798417462, 3925430452931048881, 227747632524799252560, 14124278646990484707601
Offset: 0

Views

Author

Henry Bottomley, Dec 31 2002

Keywords

Examples

			a(3) = (4*3-2)*a(2)+a(1) = 10*13+2 = 132.
		

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=(4*n-2)*a(n-1)+a(n-2),a(0)=1,a(1)=2},a(n),remember):
    map(f, [$0..50]); # Robert Israel, May 03 2016
  • Mathematica
    a[n_] := Sum[(2n-2k)!/((n-2k)! (2k)!), {k, 0, n/2}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Apr 10 2019, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum((2*n-2*k)!/((n-2*k)!*(2*k)!),k,0,n/2); /* Vladimir Kruchinin, May 03 2016 */

Formula

a(n) = (A001517(n)+|A002119(n)|)/2 = A079166(2, n). a(n)/|A002119(n)| tends to 1.8591409...=(e+1)/2; a(n)/A001517(n) tends to 0.68393972...=2e/(e+1).
E.g.f.: cosh((1-sqrt(1-4*x))/2)/sqrt(1-4*x). - Vladimir Kruchinin, May 03 2016
a(n) = Sum_{k=0..n/2}((2*n-2*k)!/((n-2*k)!*(2*k)!)). - Vladimir Kruchinin, May 03 2016
a(n) = ((-1)^n*sqrt(Pi*exp(-1))*BesselI((2*n+1)/2, 1/2))/2 + (BesselK((2*n+1)/2, 1/2)*cosh(1/2))/sqrt(Pi), where BesselI(n,x) is the modified Bessel function of the first kind, BesselK(n,x) is the modified Bessel function of the second kind. - Ilya Gutkovskiy, May 03 2016
a(n) = (hypergeom([-n,n+1],[],-1)+(-1)^n*hypergeom([-n,n+1],[],1))/2. - Peter Luschny, May 03 2016
Showing 1-10 of 23 results. Next