cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Dmitry Efimov

Dmitry Efimov's wiki page.

Dmitry Efimov has authored 4 sequences.

A336400 The hafnian of a symmetric Toeplitz matrix of order 2*n, n>=2 with the first row (0,2,1,...,1,2); a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 9, 44, 303, 2697, 29438, 380529, 5683359, 96290588, 1824544857, 38229811083, 877643031554, 21906313145979, 590665804363833, 17109084307014332, 529833078045763263, 17468521692479218209, 610901505126064857854, 22586913755160674065113
Offset: 0

Author

Dmitry Efimov, Jul 22 2020

Keywords

Comments

Number of perfect matchings of a chord diagram with 2*n vertices, where neighboring vertices are joined by two chords, and any other pair of vertices is joined by one chord.

Examples

			A symmetric 4x4 Toeplitz matrix A with the first row (0,2,1,2) has the form:
0 2 1 2
2 0 2 1
1 2 0 2
2 1 2 0.
Its hafnian equals Hf(A)=a12*a34+a13*a24+a14*a23=2*2+1*1+2*2=9.
		

Crossrefs

Programs

  • Magma
    I:=[1,2,9]; [n le 3 select I[n] else ( (22*n^2-118*n+139)*Self(n-1) + (10*n^2-74*n+141)*Self(n-2) + 5*(n-5)*Self(n-3) )/(11*n-40): n in [1..30]]; // G. C. Greubel, Sep 28 2023
    
  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 2, 9][n+1],
         ((22*n^2-74*n+43)*a(n-1)+(10*n^2-54*n+77)*a(n-2)
          +5*(n-4)*a(n-3))/(11*n-29))
        end:
    seq(a(n), n=0..22);  # Alois P. Heinz, Jul 28 2020
  • Mathematica
    Join[{1,2},Table[2^(n+1)*HypergeometricU[n,1+2 n,2],{n,2,19}]] (* Stefano Spezia, Jul 22 2020 *)
    (* or *) Join[{1, 2}, Table[n*Sum[(n+k-1)!/(k!*(n-k)!*2^(k-1)),{k,0,n}],{n,2,200}]] (* Georg Fischer, Jul 28 2020 *)
  • SageMath
    def A336400(n): return n+1 if n<2 else (2/factorial(n-1))*sum(binomial(n,k)*gamma(n+k)/2^k for k in range(n+1))
    [A336400(n) for n in range(31)] # G. C. Greubel, Sep 28 2023

Formula

a(n) = n*Sum_{k=0..n} (n+k-1)!/(k!*(n-k)!*2^(k-1)), n>=2.
a(n) = A001515(n) + A001515(n-1), n>=2.
a(n) ~ (2*n)!*e/(n!*2^n).
a(n) = 2^(n+1)*U(n, 1+2*n, 2) for n >= 2, where U(a, b, c) is the confluent hypergeometric function. - Stefano Spezia, Jul 22 2020
a(n) = ((22*n^2-74*n+43)*a(n-1) + (10*n^2-54*n+77)*a(n-2) + 5*(n-4)*a(n-3)) / (11*n-29) for n >= 3. - Alois P. Heinz, Jul 28 2020
E.g.f.: - 1 - x + (1 + 1/sqrt(1-2*x))*exp(1 - sqrt(1-2* x)). - G. C. Greubel, Sep 28 2023

Extensions

Incorrect recurrences removed and a(18) corrected by Georg Fischer, Jul 28 2020

A336286 The hafnian of a symmetric Toeplitz matrix of order 2*n, n>=2 with the first row (0,1,2,...,2,0); a(0)=a(1)=1.

Original entry on oeis.org

1, 1, 5, 57, 859, 16087, 362781, 9593105, 291347603, 9998539791, 382732896853, 16169762600329, 747423640472235, 37523173542935207, 2033249827596197549, 118278700627740322977, 7352204062275501662371, 486343759162888783503775, 34112193002666850227154213
Offset: 0

Author

Dmitry Efimov, Jul 16 2020

Keywords

Comments

Number of perfect matchings of an arc diagram with 2*n vertices, where neighboring vertices are joined by one arc, the vertices 1 and 2*n are not adjacent if n>=2, and all other pairs of vertices are joined by two arcs.

Examples

			A symmetric 4 X 4 Toeplitz matrix A with the first row (0,1,2,0) has the form:
  0 1 2 0
  1 0 1 2
  2 1 0 1
  0 2 1 0.
Its hafnian equals Hf(A) = a12*a34 + a13*a24 + a14*a23 = 1*1 + 2*2 + 0*1 = 5 = a(2).
		

Crossrefs

Programs

  • Maple
    [1,1,seq(add((-1)^(n-k-1)*(n+k-1)!*(-3*n+k)/(k!*(n-k)!),k=0..n),n=2..32)] # Georg Fischer, Jun 05 2021
  • Mathematica
    Join[{1,1},RecurrenceTable[{a[n+1] == (4*n+4)*a[n]-(8*n-13)*a[n-1]-2*a[n-2], a[2]==5, a[3]==57, a[4]==859}, a[n], {n,2,32}]] (* Georg Fischer, Jun 05 2021 *)

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*(n+k-1)!*(3*n-k)/(k!*(n-k)!), n>=2.
D-finite with recurrence a(n+1) = (4n+4)*a(n) - (8n-13)*a(n-1) - 2*a(n-2), n>=4.
D-finite with recurrence a(n+1) = ((32*n^2-12*n+2)*a(n) + (8*n+1)*a(n-1))/(8*n-7), n>=3.
a(n) = |A002119(n)| - 2*|A002119(n-1)|, n>=2.
a(n) ~ (2*n)!/sqrt(e)*n!.

A336114 The hafnian of a symmetric Toeplitz matrix of order 2*n, n>=2 with the first row (0,1,2,...,2,1); a(0)=a(1)=1.

Original entry on oeis.org

1, 1, 6, 64, 930, 17088, 380870, 9992064, 301738626, 10310669440, 393355695942, 16573741095360, 764401360062626, 38304552622588224, 2072335759298438790, 120390122318741003008, 7474705606285243345410, 493940966313183768532224, 34613731176130328980714886
Offset: 0

Author

Dmitry Efimov, Jul 21 2020

Keywords

Comments

Number of perfect matchings of a chord diagram with 2*n vertices, where neighboring vertices are joined by one chord, and any other pair of vertices is joined by two chords.

Examples

			A symmetric 4x4 Toeplitz matrix A with the first row (0,1,2,1) has the form:
0 1 2 1
1 0 1 2
2 1 0 1
1 2 1 0.
Its hafnian equals Hf(A) = a12*a34+a13*a24+a14*a23 = 1*1+2*2+1*1 = 6 = a(2).
		

Crossrefs

Programs

  • Mathematica
    Join[{1,1},Table[2 HypergeometricU[n,1+2 n,-1],{n,2,16}]] (* Stefano Spezia, Jul 22 2020 *)

Formula

a(n) = 2*n*Sum_{k=0..n} (-1)^(n-k)*(n+k-1)!/(k!*(n-k)!), n>=2.
D-finite with recurrence a(n+1) = (4*n+3)*a(n)-(4*n-7)*a(n-1)-a(n-2), n>=4.
D-finite with recurrence a(n+1) = (8*n^2*a(n)+(2*n+1)*a(n-1))/(2*n-1), n>=3.
a(n) = |A002119(n)|-|A002119(n-1)|, n>=2.
a(n) ~ (2*n)!/(sqrt(e)*n!).
a(n) = U(n,1+2*n,-1) for n >= 2, where U(a,b,c) is the confluent hypergeometric function of the second kind. - Stefano Spezia, Jul 22 2020

A268306 The number of even permutations p of 1,2,...,n such that -1<=p(i)-i<=2 for i=1,2,...,n.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 22, 41, 75, 137, 252, 464, 853, 1568, 2884, 5305, 9757, 17945, 33006, 60708, 111659, 205372, 377738, 694769, 1277879, 2350385, 4323032, 7951296, 14624713, 26899040, 49475048, 90998801, 167372889, 307846737, 566218426
Offset: 1

Author

Dmitry Efimov, Jan 31 2016

Keywords

Examples

			There exist two even permutations p of 1,2,3 such that -1<=p(i)-i<=2 for i=1,2,3: (123) and (312), therefore a(3)=2.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x + x^2 - x^3 - x^5)/((1 - x) (1 + x^2) (1 - x - x^2 - x^3)), {x, 0, 34}], x] (* Michael De Vlieger, Feb 01 2016 *)
  • Maxima
    t1:0$ t2:0$ t3:1$  for i:1 thru 100 do (a:1/2+sin((2*i+1)*%pi/4)/sqrt(2),
    t:t1+t2+t3, t1:t2, t2:t3, t3:t, e:(t+a)/2, print(e));
    
  • PARI
    Vec(x*(1-x+x^2-x^3-x^5)/((1-x)*(1+x^2)*(1-x-x^2-x^3)) + O(x^50)) \\ Colin Barker, Jan 31 2016

Formula

a(n) = A133872(n)/2 + A000073(n+2)/2.
G.f.: x*(1-x+x^2-x^3-x^5) / ((1-x)*(1+x^2)*(1-x-x^2-x^3)). - Colin Barker, Jan 31 2016