cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A160327 Decimal expansion of (e-1)/(e+1).

Original entry on oeis.org

4, 6, 2, 1, 1, 7, 1, 5, 7, 2, 6, 0, 0, 0, 9, 7, 5, 8, 5, 0, 2, 3, 1, 8, 4, 8, 3, 6, 4, 3, 6, 7, 2, 5, 4, 8, 7, 3, 0, 2, 8, 9, 2, 8, 0, 3, 3, 0, 1, 1, 3, 0, 3, 8, 5, 5, 2, 7, 3, 1, 8, 1, 5, 8, 3, 8, 0, 8, 0, 9, 0, 6, 1, 4, 0, 4, 0, 9, 2, 7, 8, 7, 7, 4, 9, 4, 9, 0, 6, 4, 1, 5, 1, 9, 6, 2, 4, 9, 0, 5, 8, 4, 3, 4, 8
Offset: 0

Views

Author

Harry J. Smith, May 09 2009

Keywords

Examples

			0.462117157260009758502318483643672548730289280330113038552731815838080...
		

Crossrefs

Cf. A016825 (continued fraction), A086403/A079165 (convergents).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (Exp(1) - 1)/(Exp(1) + 1); // G. C. Greubel, Oct 05 2018
  • Mathematica
    RealDigits[(E-1)/(E+1), 10, 100][[1]] (* G. C. Greubel, Oct 05 2018 *)
  • PARI
    default(realprecision, 20080); x=tanh(1/2)*10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b160327.txt", n, " ", d));
    
  • PARI
    (exp(1)-1)/(exp(1)+1) \\ Altug Alkan, Oct 05 2018
    

Formula

(e-1)/(e+1) = tanh(1/2).
Equals 2 * Sum_{k>=1} (2^(2*k)-1)*B(2*k)/(2*k)!, where B(2*k) = A000367(k)/A002445(k) are the Bernoulli numbers. - Amiram Eldar, Nov 25 2020
Equals -i * tan(i/2). - Michal Paulovic, Jan 03 2023

A086403 Numerators in continued fraction representation of (e-1)/(e+1).

Original entry on oeis.org

1, 6, 61, 860, 15541, 342762, 8927353, 268163352, 9126481321, 347074453550, 14586253530421, 671314736852916, 33580323096176221, 1814008761930368850, 105246088515057569521, 6527071496695499679152, 430891964870418036393553, 30168964612425958047227862
Offset: 1

Views

Author

Gary W. Adamson, Jul 18 2003

Keywords

Examples

			a(4) = 860 = closest integer to[(e-1)/(e+1)]*A079165(4); = floor(860.0000292...) = 860. 860/1861 = [2, 6, 10, 14] = .462117141...; (e-1)/(e+1) = .462117157...
		

References

  • Calvin C. Clawson, "Mathematical Mysteries", Perseus, 1999, p. 225.

Crossrefs

Programs

  • Maple
    b:= proc(n) local i, q;
          q:= 0;
          for i to n do
            q:= 1/(q+4*(n-i)+2)
          od; q
        end:
    a:= n-> numer(b(n)):
    seq(a(n), n=1..20);  # Alois P. Heinz, Feb 03 2012
    numtheory:-cfrac((exp(1)-1)/(exp(1)+1),50,'convergents'):
    map(numer,convergents[2..-2]); # Robert Israel, Apr 26 2016
  • Mathematica
    Numerator@ FromContinuedFraction@ ContinuedFraction[(E - 1)/(E + 1), #] & /@ Range[2, 19] (* Michael De Vlieger, Apr 26 2016 *)
  • Maxima
    a(n):=(sum((2*n-2*k+1)!/((2*k-1)!*(n-2*k+1)!),k,1,(n+1)/2));
    taylor(sinh((1-sqrt(1-4*x))/2)/sqrt(1-4*x),x,0,10); /* Vladimir Kruchinin, Apr 26 2016 */

Formula

Partial quotients in continued fraction representation of (e-1)/(e+1) are A016825: [2, 6, 10, 14, 18...], the convergents being: [2] = 1/2, [2, 6] = 6/13, [2, 6, 10] = 61/132...etc.; denominators are A079165 starting with n=1: 2, 13, 132, 1861, 33630, 741721, 19318376... 2. a(n) = closest integer to [(e-1)/(e+1)]*A079165(n), n>0
E.g.f.: sinh((1-sqrt(1-4*x))/2)/sqrt(1-4*x). - Vladimir Kruchinin, Apr 26 2016
a(n) = Sum_{k=1..(n+1)/2} (2*n-2*k+1)!/((2*k-1)!*(n-2*k+1)!). - Vladimir Kruchinin, Apr 26 2016
a(n) = -((-1)^n*sqrt(Pi/exp(1))*BesselI((2*n+1)/2, 1/2))/2 + (BesselK((2*n+1)/2, 1/2)*sinh(1/2))/sqrt(Pi), where BesselI(n,x) is the modified Bessel function of the first kind, BesselK(n,x) is the modified Bessel function of the second kind. - Ilya Gutkovskiy, Apr 26 2016
From Vaclav Kotesovec, Apr 27 2016: (Start)
a(n)/n! ~ BesselI(1/2, 1/2) * 2^(2*n-1) / sqrt(n).
a(n) ~ sinh(1/2) * 2^(2*n + 1/2) * n^n / exp(n).
(End)

Extensions

More terms from Alois P. Heinz, Feb 03 2012

A079166 Square array read by antidiagonals of T(n,k)=(4k-2)*T(n,k-1)+T(n,k-2) with T(n,0)=1 and T(n,1)=n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 10, 7, 2, 1, 141, 71, 13, 3, 1, 2548, 1001, 132, 19, 4, 1, 56197, 18089, 1861, 193, 25, 5, 1, 1463670, 398959, 33630, 2721, 254, 31, 6, 1, 43966297, 10391023, 741721, 49171, 3581, 315, 37, 7, 1, 1496317768, 312129649, 19318376, 1084483
Offset: 0

Views

Author

Henry Bottomley, Dec 31 2002

Keywords

Examples

			Rows start: 1,0,1,10,141,2548,56197,...; 1,1,7,71,1001,18089,398959,...; 1,2,13,132,1861,33630,741721,...; 1,3,19,193,2721,49171,1084483,...; etc.
		

Crossrefs

Rows include A002119 (unsigned), A079165, A001517. Columns include A000012, A001477, A016921 (offset).

Formula

T(n, k) =2*T(n-1, k)-T(n-2, k). T(n, k)/T(1, k) tends to ( (n-1)*e - (n-3) )/2 as k increases: e.g. T(3, k)/T(1, k) tends to e.
Showing 1-3 of 3 results.