A272647 a(n) = A001517(n) mod 7.
1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. H. Lehmer, Arithmetical periodicities of Bessel functions, Annals of Mathematics, 33 (1932): 143-150. The sequence is on page 149.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1).
Programs
-
Maple
f:=proc(n) option remember; if n = 0 then 1 elif n=1 then 3 else f(n-2)+(4*n-2)*f(n-1); fi; end; [seq(f(n) mod 7, n=0..120)];
-
Mathematica
PadRight[{},120,{1,3,5,4,5,3,1}] (* Harvey P. Dale, Jul 17 2020 *)
-
PARI
Vec((1+3*x+5*x^2+4*x^3+5*x^4+3*x^5+x^6)/((1-x)*(1+x+x^2+x^3+x^4+x^5+x^6)) + O(x^50)) \\ Colin Barker, May 10 2016
Formula
G.f.: (1 + 3*x + 5*x^2 + 4*x^3 + 5*x^4 + 3*x^5 + x^6) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - Colin Barker, May 10 2016
a(n) = (3*m^6 - 54*m^5 + 365*m^4 - 1140*m^3 + 1582*m^2 - 636*m + 60)/60, where m = n mod 7. - Luce ETIENNE, Oct 18 2018
Comments