cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 28 results. Next

A272647 a(n) = A001517(n) mod 7.

Original entry on oeis.org

1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1, 1, 3, 5, 4, 5, 3, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2016

Keywords

Comments

Periodic with period length 7.

Crossrefs

Programs

  • Maple
    f:=proc(n) option remember; if n = 0 then 1 elif n=1 then 3 else f(n-2)+(4*n-2)*f(n-1); fi; end;
    [seq(f(n) mod 7, n=0..120)];
  • Mathematica
    PadRight[{},120,{1,3,5,4,5,3,1}] (* Harvey P. Dale, Jul 17 2020 *)
  • PARI
    Vec((1+3*x+5*x^2+4*x^3+5*x^4+3*x^5+x^6)/((1-x)*(1+x+x^2+x^3+x^4+x^5+x^6)) + O(x^50)) \\ Colin Barker, May 10 2016

Formula

G.f.: (1 + 3*x + 5*x^2 + 4*x^3 + 5*x^4 + 3*x^5 + x^6) / ((1 - x)*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - Colin Barker, May 10 2016
a(n) = (3*m^6 - 54*m^5 + 365*m^4 - 1140*m^3 + 1582*m^2 - 636*m + 60)/60, where m = n mod 7. - Luce ETIENNE, Oct 18 2018

A001515 Bessel polynomial y_n(x) evaluated at x=1.

Original entry on oeis.org

1, 2, 7, 37, 266, 2431, 27007, 353522, 5329837, 90960751, 1733584106, 36496226977, 841146804577, 21065166341402, 569600638022431, 16539483668991901, 513293594376771362, 16955228098102446847, 593946277027962411007, 21992967478132711654106, 858319677924203716921141
Offset: 0

Views

Author

Keywords

Comments

For some applications it is better to start this sequence with an extra 1 at the beginning: 1, 1, 2, 37, 266, 2431, 27007, 353522, 5329837, ... (again with offset 0). This sequence now has its own entry - see A144301.
Number of partitions of {1,...,k}, n <= k <= 2n, into n blocks with no more than 2 elements per block. Restated, number of ways to use the elements of {1,...,k}, n <= k <= 2n, once each to form a collection of n sets, each having 1 or 2 elements. - Bob Proctor, Apr 18 2005, Jun 26 2006. E.g., for n=2 we get: (k=2): {1,2}; (k=3): {1,23}, {2,13}, {3,12}; (k=4): {12,34}, {13,24}, {14,23}, for a total of a(2) = 7 partitions.
Equivalently, number of sequences of n unlabeled items such that each item occurs just once or twice (cf. A105749). - David Applegate, Dec 08 2008
Numerator of (n+1)-th convergent to 1+tanh(1). - Benoit Cloitre, Dec 20 2002
The following Maple lines show how this sequence and A144505, A144498, A001514, A144513, A144506, A144514, A144507, A144301 are related.
f0:=proc(n) local k; add((n+k)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f0(n),n=0..10)];
# that is this sequence
f1:=proc(n) local k; add((n+k+1)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f1(n),n=0..10)];
# that is A144498
f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f2(n),n=0..10)];
# that is A144513; divided by 2 gives A001514
f3:=proc(n) local k; add((n+k+3)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f3(n),n=0..10)];
# that is A144514; divided by 6 gives A144506
f4:=proc(n) local k; add((n+k+4)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f4(n),n=0..10)];
# that divided by 24 gives A144507
a(n) is also the numerator of the continued fraction sequence beginning with 2 followed by 3 and the remaining odd numbers: [2,3,5,7,9,11,13,...]. - Gil Broussard, Oct 07 2009
Also, number of scenarios in the Gift Exchange Game when a gift can be stolen at most once. - N. J. A. Sloane, Jan 25 2017

Examples

			The first few Bessel polynomials are (cf. A001497, A001498):
  y_0 = 1
  y_1 = 1 +   x
  y_2 = 1 + 3*x +  3*x^2
  y_3 = 1 + 6*x + 15*x^2 + 15*x^3, etc.
G.f. = 1 + 2*x + 7*x^2 + 37*x^3 + 266*x^4 + 2431*x^5 + 27007*x^6 + 353522*x^7 + ...
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A144301 for other formulas and comments.
Row sums of Bessel triangle A001497 as well as of A001498.
Partial sums: A105748.
First differences: A144498.
Replace "sets" with "lists" in comment: A001517.
The gift scenarios sequences when a gift can be stolen at most s times, for s = 1..9, are this sequence, A144416, A144508, A144509, A149187, A281358, A281359, A281360, A281361.

Programs

  • Haskell
    a001515 = sum . a001497_row -- Reinhard Zumkeller, Nov 24 2014
    
  • Magma
    [(&+[Binomial(n+j, 2*j)*Catalan(j)*Factorial(j+1)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
    
  • Maple
    A001515 := proc(n) option remember; if n=0 then 1 elif n=1 then 2 else (2*n-1)*A001515(n-1)+A001515(n-2); fi; end;
    A001515:=proc(n) local k; add( (n+k)!/((n-k)!*k!*2^k),k=0..n); end;
    A001515:= n-> hypergeom( [n+1,-n],[],-1/2);
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==(2n-1)a[n-1]+a[n-2]},a[n], {n,25}] (* Harvey P. Dale, Jun 18 2011 *)
    Table[Sum[BellY[n+1, k, (2 Range[n+1] - 3)!!], {k, n+1}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    {a(n) = if( n<0, n = -1 - n); sum( k=0, n, (2*n - k)! / (k! * (n-k)!) * 2^(k-n))} /* Michael Somos, Apr 08 2012 */
    
  • SageMath
    [sum(binomial(n+j,2*j)*binomial(2*j,j)*factorial(j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023

Formula

The following formulas can all be found in (or are easily derived from formulas in) Grosswald's book.
D-finite with recurrence: a(0) = 1, a(1) = 2; thereafter a(n) = (2*n-1)*a(n-1) + a(n-2).
E.g.f.: exp(1-sqrt(1-2*x))/sqrt(1-2*x).
a(n) = Sum_{ k = 0..n } binomial(n+k,2*k)*(2*k)!/(k!*2^k).
Equivalently, a(n) = Sum_{ k = 0..n } (n+k)!/((n-k)!*k!*2^k) = Sum_{ k = n..2n } k!/((2n-k)!*(k-n)!*2^(k-n)).
a(n) = Hypergeometric2F0( [n+1, -n] ; - ; -1/2).
a(n) = A105749(n)/n!.
a(n) ~ exp(1)*(2n)!/(n!*2^n) as n -> oo. [See Grosswald, p. 124]
a(n) = A144301(n+1).
G.f.: 1/(1-x-x/(1-x-2*x/(1-x-3*x/(1-x-4*x/(1-x-5*x/(1-.... (continued fraction). - Paul Barry, Feb 08 2009
From Michael Somos, Apr 08 2012: (Start)
a(-1 - n) = a(n).
(a(n+1) + a(n+2))^2 = a(n)*a(n+2) + a(n+1)*a(n+3) for all integer n. (End)
G.f.: 1/G(0) where G(k) = 1 - x - x*(2*k+1)/(1 - x - 2*x*(k+1)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2012
E.g.f.: E(0)/(2*sqrt(1-2*x)), where E(k) = 1 + 1/(1 - 2*x/(2*x + (k+1)*(1+sqrt(1-2*x))/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 23 2013
G.f.: T(0)/(1-x), where T(k) = 1 - (k+1)*x/((k+1)*x - (1-x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2013
a(n) = (2*BesselI(1/2, 1)+BesselI(3/2, 1))*BesselK(n+1/2, 1). - Jean-François Alcover, Feb 03 2014
a(n) = exp(1)*sqrt(2/Pi)*BesselK(1/2+n,1). - Gerry Martens, Jul 22 2015
From Peter Bala, Apr 14 2017: (Start)
a(n) = (1/n!)*Integral_{x = 0..inf} exp(-x)*x^n*(1 + x/2)^n dx.
E.g.f.: d/dx( exp(x*c(x/2)) ) = 1 + 2*x + 7*x^2/2! + 37*x^3/3! + ..., where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 2^n * hypergeometric1f1(-n; -2*n; 2).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 2*t/(1-t)^2). (End)

Extensions

Extensively edited by N. J. A. Sloane, Dec 07 2008

A001498 Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 15, 15, 1, 10, 45, 105, 105, 1, 15, 105, 420, 945, 945, 1, 21, 210, 1260, 4725, 10395, 10395, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 1, 45, 990, 13860, 135135, 945945, 4729725, 16216200, 34459425, 34459425
Offset: 0

Views

Author

Keywords

Comments

The row polynomials with exponents in increasing order (e.g., third row: 1+3x+3x^2) are Grosswald's y_{n}(x) polynomials, p. 18, Eq. (7).
Also called Bessel numbers of first kind.
The triangle a(n,k) has factorization [C(n,k)][C(k,n-k)]Diag((2n-1)!!) The triangle a(n-k,k) is A100861, which gives coefficients of scaled Hermite polynomials. - Paul Barry, May 21 2005
Related to k-matchings of the complete graph K_n by a(n,k)=A100861(n+k,k). Related to the Morgan-Voyce polynomials by a(n,k)=(2k-1)!!*A085478(n,k). - Paul Barry, Aug 17 2005
Related to Hermite polynomials by a(n,k)=(-1)^k*A060821(n+k, n-k)/2^n. - Paul Barry, Aug 28 2005
The row polynomials, the Bessel polynomials y(n,x):=Sum_{m=0..n} (a(n,m)*x^m) (called y_{n}(x) in the Grosswald reference) satisfy (x^2)*(d^2/dx^2)y(n,x) + 2*(x+1)*(d/dx)y(n,x) - n*(n+1)*y(n,x) = 0.
a(n-1, m-1), n >= m >= 1, enumerates unordered n-vertex forests composed of m plane (aka ordered) increasing (rooted) trees. Proof from the e.g.f. of the first column Y(z):=1-sqrt(1-2*z) (offset 1) and the Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0)=0, with out-degree o.g.f. phi(w)=1/(1-w). See their remark on p. 28 on plane recursive trees. For m=1 see the D. Callan comment on A001147 from Oct 26 2006. - Wolfdieter Lang, Sep 14 2007
The asymptotic expansions of the higher order exponential integrals E(x,m,n), see A163931 for information, lead to the Bessel numbers of the first kind in an intriguing way. For the first four values of m these asymptotic expansions lead to the triangles A130534 (m=1), A028421 (m=2), A163932 (m=3) and A163934 (m=4). The o.g.f.s. of the right hand columns of these triangles in their turn lead to the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4). The row sums of these four triangles lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four right hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next four right hand columns of A001498. So one by one all columns of the triangle of coefficients of Bessel polynomials appear. - Johannes W. Meijer, Oct 07 2009
a(n,k) also appear as coefficients of (n+1)st degree of the differential operator D:=1/t d/dt, namely D^{n+1}= Sum_{k=0..n} a(n,k) (-1)^{n-k} t^{1-(n+k)} (d^{n+1-k}/dt^{n+1-k}. - Leonid Bedratyuk, Aug 06 2010
a(n-1,k) are the coefficients when expanding (xI)^n in terms of powers of I. Let I(f)(x) := Integral_{a..x} f(t) dt, and (xI)^n := x Integral_{a..x} [ x_{n-1} Integral_{a..x_{n-1}} [ x_{n-2} Integral_{a..x_{n-2}} ... [ x_1 Integral_{a..x_1} f(t) dt ] dx_1 ] .. dx_{n-2} ] dx_{n-1}. Then: (xI)^n = Sum_{k=0..n-1} (-1)^k * a(n-1,k) * x^(n-k) * I^(n+k)(f)(x) where I^(n) denotes iterated integration. - Abdelhay Benmoussa, Apr 11 2025

Examples

			The triangle a(n, k), n >= 0, k = 0..n, begins:
  1
  1  1
  1  3   3
  1  6  15    15
  1 10  45   105    105
  1 15 105   420    945    945
  1 21 210  1260   4725  10395   10395
  1 28 378  3150  17325  62370  135135   135135
  1 36 630  6930  51975 270270  945945  2027025  2027025
  1 45 990 13860 135135 945945 4729725 16216200 34459425 34459425
  ...
And the first few Bessel polynomials are:
  y_0(x) = 1,
  y_1(x) = x + 1,
  y_2(x) = 3*x^2 + 3*x + 1,
  y_3(x) = 15*x^3 + 15*x^2 + 6*x + 1,
  y_4(x) = 105*x^4 + 105*x^3 + 45*x^2 + 10*x + 1,
  y_5(x) = 945*x^5 + 945*x^4 + 420*x^3 + 105*x^2 + 15*x + 1,
  ...
Tree counting: a(2,1)=3 for the unordered forest of m=2 plane increasing trees with n=3 vertices, namely one tree with one vertex (root) and another tree with two vertices (a root and a leaf), labeled increasingly as (1, 23), (2,13) and (3,12). - _Wolfdieter Lang_, Sep 14 2007
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Cf. A001497 (same triangle but rows read in reverse order). Other versions of this same triangle are given in A144331, A144299, A111924 and A100861.
Columns from left edge include A000217, A050534.
Columns 1-6 from right edge are A001147, A001879, A000457, A001880, A001881, A038121.
Bessel polynomials evaluated at certain x are A001515 (x=1, row sums), A000806 (x=-1), A001517 (x=2), A002119 (x=-2), A001518 (x=3), A065923 (x=-3), A065919 (x=4). Cf. A043301, A003215.
Cf. A245066 (central terms). A113025 (y_n(2*x)).

Programs

  • Haskell
    a001498 n k = a001498_tabl !! n !! k
    a001498_row n = a001498_tabl !! n
    a001498_tabl = map reverse a001497_tabl
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    /* As triangle: */ [[Factorial(n+k)/(2^k*Factorial(n-k)*Factorial(k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
  • Maple
    Bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end; # explicit Bessel polynomials
    Bessel := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*Bessel(n-1)+Bessel(n-2); fi; end; # recurrence for Bessel polynomials
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
    f := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*f(n-1)+f(n-2); fi; end;
    # Alternative:
    T := (n,k) -> pochhammer(n+1,k)*binomial(n,k)/2^k:
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 11 2018
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
    else (n - k + 1)* T(n, k - 1) + T(n - 1, k) fi fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Oct 02 2023
  • Mathematica
    max=50; Flatten[Table[(n+k)!/(2^k*(n-k)!*k!), {n, 0, Sqrt[2 max]//Ceiling}, {k, 0, n}]][[1 ;; max]] (* Jean-François Alcover, Mar 20 2011 *)
  • PARI
    {T(n,k)=if(k<0||k>n, 0, binomial(n, k)*(n+k)!/2^k/n!)} /* Michael Somos, Oct 03 2006 */
    
  • PARI
    A001497_ser(N,t='t) = {
      my(x='x+O('x^(N+2)));
      serlaplace(deriv(exp((1-sqrt(1-2*t*x))/t),'x));
    };
    concat(apply(Vecrev, Vec(A001497_ser(9)))) \\ Gheorghe Coserea, Dec 27 2017
    

Formula

a(n, k) = (n+k)!/(2^k*(n-k)!*k!) (see Grosswald and Riordan). - Ralf Stephan, Apr 20 2004
a(n, 0)=1; a(0, k)=0, k > 0; a(n, k) = a(n-1, k) + (n-k+1) * a(n, k-1) = a(n-1, k) + (n+k-1) * a(n-1, k-1). - Len Smiley
a(n, m) = A001497(n, n-m) = A001147(m)*binomial(n+m, 2*m) for n >= m >= 0, otherwise 0.
G.f. for m-th column: (A001147(m)*x^m)/(1-x)^(2*m+1), m >= 0, where A001147(m) = double factorials (from explicit a(n, m) form).
Row polynomials y_n(x) are given by D^(n+1)(exp(t)) evaluated at t = 0, where D is the operator 1/(1-t*x)*d/dt. - Peter Bala, Nov 25 2011
G.f.: conjecture: T(0)/(1-x), where T(k) = 1 - x*y*(k+1)/(x*y*(k+1) - (1-x)^2/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
Recurrence from Grosswald, p. 18, eq. (5), for the row polynomials: y_n(x) = (2*n-1)*x*y_{n-1} + y_{n-2}(x), y_{-1}(x) = 1 = y_{0} = 1, n >= 1. This becomes, for n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = (2*n-1)*a(n-1, k-1) + a(n-2, k). Compare with the above given recurrences. - Wolfdieter Lang, May 11 2018
T(n, k) = Pochhammer(n+1,k)*binomial(n,k)/2^k = A113025(n,k)/2^k. - Peter Luschny, May 11 2018
a(n, k) = Sum_{i=0..min(n-1, k)} (n-i)(k-i) * a(n-1, i) where x(n) = x*(x-1)*...*(x-n+1) is the falling factorial, this equality follows directly from the operational formula we wrote in Apr 11 2025.- Abdelhay Benmoussa, May 18 2025

A002119 Bessel polynomial y_n(-2).

Original entry on oeis.org

1, -1, 7, -71, 1001, -18089, 398959, -10391023, 312129649, -10622799089, 403978495031, -16977719590391, 781379079653017, -39085931702241241, 2111421691000680031, -122501544009741683039, 7597207150294985028449, -501538173463478753560673
Offset: 0

Views

Author

Keywords

Comments

Absolute values give denominators of successive convergents to e using continued fraction 1+2/(1+1/(6+1/(10+1/(14+1/(18+1/(22+1/26...)))))).
Absolute values give number of different arrangements of nonnegative integers on a set of n 6-sided dice such that the dice can add to any integer from 0 to 6^n-1. For example when n=2, there are 7 arrangements that can result in any total from 0 to 35. Cf. A273013. The number of sides on the dice only needs to be the product of two distinct primes, of which 6 is the first example. - Elliott Line, Jun 10 2016
Absolute values give number of Krasner factorizations of (x^(6^n)-1)/(x-1) into n polynomials p_i(x), i=1,2,...,n, satisfying p_i(1)=6. In these expressions 6 can be replaced with any product of two distinct primes (Krasner and Ranulac, 1937). - William P. Orrick, Jan 18 2023
Absolute values give number of pairs (s, b) where s is a covering of the 1 X 2n grid with 1 X 2 dimers and equal numbers of red and blue 1 X 1 monomers and b is a bijection between the red monomers and the blue monomers that does not map adjacent monomers to each other. Ilya Gutkovskiy's formula counts such pairs by an inclusion-exclusion argument. The correspondence with Elliott Line's dice problem is that a dimer corresponds to a die containing an arithmetic progression of length 6 and a pair (r, b(r)), where r is a red monomer and b(r) its image under b, corresponds to a die containing the sum of an arithmetic progression of length 2 and an arithmetic progression of length 3. - William P. Orrick, Jan 19 2023

Examples

			Example from _William P. Orrick_, Jan 19 2023: (Start)
For n=2 the Bessel polynomial is y_2(x) = 1 + 3x + 3x^2 which satisfies y_2(-2) = -7.
The |a(2)|=7 dice pairs are
  {{0,1,2,3,4,5}, {0,6,12,18,24,30}},
  {{0,1,2,18,19,20}, {0,3,6,9,12,15}},
  {{0,1,2,9,10,11}, {0,3,6,18,21,24}},
  {{0,1,6,7,12,13}, {0,2,4,18,20,22}},
  {{0,1,12,13,24,25}, {0,2,4,6,8,10}},
  {{0,1,2,6,7,8}, {0,3,12,15,24,27}},
  {{0,1,4,5,8,9}, {0,2,12,14,24,26}}.
The corresponding Krasner factorizations of (x^36-1)/(x-1) are
  {(x^6-1)/(x-1), (x^36-1)/(x^6-1)},
  {((x^36-1)/(x^18-1))*((x^3-1)/(x-1)), (x^18-1)/(x^3-1)},
  {((x^18-1)/(x^9-1))*((x^3-1)/(x-1)), ((x^36-1)/(x^18-1))*((x^9-1)/(x^3-1))},
  {((x^18-1)/(x^6-1))*((x^2-1)/(x-1)), ((x^36-1)/(x^18-1))*((x^6-1)/(x^2-1))},
  {((x^36-1)/(x^12-1))*((x^2-1)/(x-1)), (x^12-1)/(x^2-1)},
  {((x^12-1)/(x^6-1))*((x^3-1)/(x-1)), ((x^36-1)/(x^12-1))*((x^6-1)/(x^3-1))},
  {((x^12-1)/(x^4-1))*((x^2-1)/(x-1)), ((x^36-1)/(x^12-1))*((x^4-1)/(x^2-1))}.
The corresponding monomer-dimer configurations, with dimers, red monomers, and blue monomers represented by the symbols '=', 'R', and 'B', and bijections between red and blue monomers given as sets of ordered pairs, are
  (==, {}),
  (B=R, {(3,1)}),
  (BBRR, {(3,1),(4,2)}),
  (RBBR, {(1,3),(4,2)}),
  (R=B, {(1,3)}),
  (BRRB, {(2,4),(3,1)}),
  (RRBB, {(1,3),(2,4)}).
(End)
		

References

  • L. Euler, 1737.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See also A033815.
Numerators of the convergents of e are A001517, which has a similar interpretation to a(n) in terms of monomer-dimer configurations, but omitting the restriction that adjacent monomers not be mapped to each other by the bijection.
Polynomial coefficients are in A001498.

Programs

  • Maple
    f:=proc(n) option remember; if n <= 1 then 1 else f(n-2)+(4*n-2)*f(n-1); fi; end;
    [seq(f(n), n=0..20)]; # This is for the unsigned version. - N. J. A. Sloane, May 09 2016
    seq(simplify((-1)^n*KummerU(-n, -2*n, -1)), n = 0..17); # Peter Luschny, May 10 2022
  • Mathematica
    Table[(-1)^k (2k)! Hypergeometric1F1[-k, -2k, -1]/k!, {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
    nxt[{n_,a_,b_}]:={n+1,b,a-2b(2n+1)}; NestList[nxt,{1,1,-1},20][[All,2]] (* Harvey P. Dale, Aug 18 2017 *)
  • PARI
    {a(n)= if(n<0, n=-n-1); sum(k=0, n, (2*n-k)!/ (k!*(n-k)!)* (-1)^(n-k) )} /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n)= local(A); if(n<0, n= -n-1); A= sqrt(1 +4*x +x*O(x^n)); n!*polcoeff( exp((A-1)/2)/A, n)} /* Michael Somos, Apr 02 2007 */
    
  • PARI
    {a(n)= local(A); if(n<0, n= -n-1); n+=2 ; for(k= 1, n, A+= x*O(x^k); A= truncate( (1+x)* exp(A) -1-A) ); A+= x*O(x^n); A-= A^2; -(-1)^n*n!* polcoeff( serreverse(A), n)} /* Michael Somos, Apr 02 2007 */
    
  • Sage
    A002119 = lambda n: hypergeometric([-n, n+1], [], 1)
    [simplify(A002119(n)) for n in (0..17)] # Peter Luschny, Oct 17 2014

Formula

D-finite with recurrence a(n) = -2(2n-1)*a(n-1) + a(n-2). - T. D. Noe, Oct 26 2006
If y = x + Sum_{k>=2} A005363(k)*x^k/k!, then y = x + Sum_{k>=2} a(k-2)(-y)^k/k!. - Michael Somos, Apr 02 2007
a(-n-1) = a(n). - Michael Somos, Apr 02 2007
a(n) = (1/n!)*Integral_{x>=-1} (-x*(1+x))^n*exp(-(1+x)). - Paul Barry, Apr 19 2010
G.f.: 1/Q(0), where Q(k) = 1 - x + 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
Expansion of exp(x) in powers of y = x*(1 + x): exp(x) = 1 + y - y^2/2! + 7*y^3/3! - 71*y^4/4! + 1001*y^5/5! - .... E.g.f.: (1/sqrt(4*x + 1))*exp(sqrt(4*x + 1)/2 - 1/2) = 1 - x + 7*x^2/2! - 71*x^3/3! + .... - Peter Bala, Dec 15 2013
a(n) = hypergeom([-n, n+1], [], 1). - Peter Luschny, Oct 17 2014
a(n) = sqrt(Pi/exp(1)) * BesselI(1/2+n, 1/2) + (-1)^n * BesselK(1/2+n, 1/2) / sqrt(exp(1)*Pi). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ (-1)^n * 2^(2*n+1/2) * n^n / exp(n+1/2). - Vaclav Kotesovec, Jul 22 2015
From G. C. Greubel, Aug 16 2017: (Start)
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; -4*t/(1-t)^2).
E.g.f.: (1+4*t)^(-1/2) * exp((sqrt(1+4*t) - 1)/2). (End)
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*binomial(n+k,k)*k!. - Ilya Gutkovskiy, Nov 24 2017
a(n) = (-1)^n*KummerU(-n, -2*n, -1). - Peter Luschny, May 10 2022

Extensions

More terms from Vladeta Jovovic, Apr 03 2000

A049027 G.f.: (1-2*x*c(x))/(1-3*x*c(x)) where c(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 1, 4, 17, 74, 326, 1446, 6441, 28770, 128750, 576944, 2587850, 11615932, 52167688, 234383146, 1053386937, 4735393794, 21291593238, 95747347176, 430624242942, 1936925461644, 8712882517188, 39195738193836, 176335080590442, 793336332850164, 3569368545752076
Offset: 0

Views

Author

Keywords

Comments

Row sums of triangle A035324.
a(n+1) = {1, 4, 17, 74, 326, ...} is the binomial transform of A059738. - Philippe Deléham, Nov 26 2009
(1, 4, 17, 74, 326, ...) is the invert transform of the odd-indexed central binomial coefficients, A001700. - David Callan, Oct 14 2012
The sequence starting with index 1 is the INVERT transform of A001700: (1, 3, 10, 35, 126, ...) and the second INVERT transform of the Catalan numbers starting with index 1: (1, 2, 5, 14, 42, ...). - Gary W. Adamson, Jun 23 2015
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by taking the first column (k = 0) of the array equal to (1,1,3,9,27,...) - powers of 3 with 1 prepended - and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1. See my link in A001517.
1
1 1
3 4 4
9 13 17 17
27 40 57 74 74
81 121 178 252 326 326
...
(End)

Examples

			G.f. = 1 + x + 4*x^2 + 17*x^3 + 74*x^4 + 326*x^5 + 1446*x^6 + 6441*x^7 + ...
		

References

  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.

Crossrefs

Programs

  • Magma
    [1] cat [n eq 1 select 1 else (9*Self(n-1)-Catalan(n-1))/2: n in [1..30]]; // Vincenzo Librandi, Jun 25 2015
    
  • Maple
    a:= proc(n) option remember; `if`(n<3, 1+3*n*(n-1)/2,
          (17/2-6/n)*a(n-1)-(18-27/n)*a(n-2))
        end:
    seq(a(n), n=0..28);  # Alois P. Heinz, Jan 28 2020
  • Mathematica
    Table[SeriesCoefficient[2/(3-1/Sqrt[1-4*x]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
    FunctionExpand@Table[3^(2n-1)/2^(n+1) + 2^n (2n-1)!! Hypergeometric2F1[1, n + 1/2, n + 2, 8/9]/(9 (n + 1)!) + 2 KroneckerDelta[n]/3, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 08 2016 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( serreverse( x * (1 + 2*x) / (1 + 3*x)^2 + x * O(x^n) ), n))}; /* Michael Somos, Apr 08 2007 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 2 / (3 - 1 / sqrt(1 - 4*x + x * O(x^n))), n))}; /* Michael Somos, Apr 08 2007 */
    
  • Sage
    (2/(3-1/sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019

Formula

G.f.: x*c(x)/(1-3*x*c(x)), c(x)= g.f. of Catalan numbers A000108.
a(n+1) = Sum_{k=0..n} 2^k*comb(2n+1, n-k)*2*(k+1)/(n+k+2) - Paul Barry, Jun 22 2004
a(n) = (9*a(n-1) - Catalan(n-1))/2, n > 1. - Vladeta Jovovic, Aug 08 2004
a(n+1) = Sum_{k=0..n} A039598(n,k)*2^k. - Philippe Deléham, Mar 21 2007
G.f.: 2 / (3 - 1 / sqrt(1 - 4*x)). - Michael Somos, Apr 08 2007
a(n) = Sum_{k=0..n} A039599(n,k)*A001045(k), for n >= 1. - Philippe Deléham, Jun 10 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i <= j), and A[i,j]=0, otherwise. Then, for n >= 1, a(n+1) = (-1)^n*charpoly(A,-3). - Milan Janjic, Jul 08 2010
From Gary W. Adamson, Jul 25 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
4, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence: 2*n*a(n) + (12-17*n)*a(n-1) + 18*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
a(n) ~ 3^(2*n-1)/2^(n+1). - Vaclav Kotesovec, Oct 08 2012
0 = a(n)*(1296*a(n+1) - 1098*a(n+2) + 180*a(n+3)) + a(n+1)*(-126*a(n+1) + 253*a(n+2) - 58*a(n+3)) + a(n+2)*(-10*a(n+2) + 4*a(n+3)) if n > 0. - Michael Somos, Jan 23 2014
O.g.f.: A(x) = 1/(1 - (1/2)*Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016
a(n) = 3^(2*n-1)/2^(n+1) + 2^n * (2*n-1)!! * hypergeom([1,n+1], [n+2], 8/9)/(9*(n+1)!) + 0^n * 2/3. - Vladimir Reshetnikov, Oct 08 2016

A001518 Bessel polynomial y_n(3).

Original entry on oeis.org

1, 4, 37, 559, 11776, 318511, 10522639, 410701432, 18492087079, 943507142461, 53798399207356, 3390242657205889, 233980541746413697, 17551930873638233164, 1421940381306443299981, 123726365104534205331511, 11507973895102987539130504
Offset: 0

Views

Author

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Polynomial coefficients are in A001498.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=3*(2*n-1)*a(n-1)+a(n-2),a(0)=1,a(1)=4},a(n),remember):
    map(f, [$0..60]); # Robert Israel, Aug 06 2015
  • Mathematica
    Table[Sum[(n+k)!*3^k/(2^k*(n-k)!*k!), {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Jul 22 2015 *)
  • PARI
    x='x+O('x^33); Vec(serlaplace(exp(1/3 - 1/3 * (1-6*x)^(1/2)) / (1-6*x)^(1/2))) \\ Gheorghe Coserea, Aug 04 2015

Formula

y_n(x) = Sum_{k=0..n} (n+k)!*(x/2)^k/((n-k)!*k!).
D-finite with recurrence a(n) = 3(2n-1)*a(n-1) + a(n-2). - T. D. Noe, Oct 26 2006
G.f.: 1/Q(0), where Q(k)= 1 - x - 3*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = exp(1/3)*sqrt(2/(3*Pi))*BesselK(1/2+n,1/3). - Gerry Martens, Jul 22 2015
a(n) ~ sqrt(2) * 6^n * n^n / exp(n-1/3). - Vaclav Kotesovec, Jul 22 2015
E.g.f.: exp(1/3 - 1/3*(1-6*x)^(1/2)) / (1-6*x)^(1/2). (formula due to B. Salvy, see Plouffe link) - Gheorghe Coserea, Aug 06 2015
From G. C. Greubel, Aug 16 2017: (Start)
a(n) = (1/2)_{n} * 6^n * hypergeometric1f1(-n; -2*n; 2/3).
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; 6*t/(1-t)^2). (End)

A127632 Expansion of c(x*c(x)), where c(x) is the g.f. for A000108.

Original entry on oeis.org

1, 1, 3, 11, 44, 185, 804, 3579, 16229, 74690, 347984, 1638169, 7780876, 37245028, 179503340, 870374211, 4243141332, 20786340271, 102275718924, 505235129250, 2504876652190, 12459922302900, 62167152967680, 311040862133625
Offset: 0

Views

Author

Paul Barry, Jan 20 2007, Jan 25 2007

Keywords

Comments

Old name was: Expansion of 1/(1 - x*c(x) * c(x*c(x))), where c(x) is the g.f. of A000108.
Hankel transform appears to be A075845.
Catalan transform of Catalan numbers. - Philippe Deléham, Jun 20 2007
Number of functions f:[1,n] -> [1,n] satisfying the condition that, for all i < j, f(j) - (j - i) is not in the interval [1, f(i) - 1]; see the Callan reference. - Joerg Arndt, May 31 2013
This is the number of intervals in the comb posets of Pallo. See the Pallo and Csar et al. references for the definition of these posets. For the proof, see the Aval et al. reference - F. Chapoton, Apr 06 2015
Construct a lower triangular array (T(n,k))n,k>=0 by putting the sequence of Catalan numbers as the first column of the array and completing the remaining columns using the recurrence T(n, k) = T(n, k-1) + T(n-1, k). This sequence will then be the leading diagonal of the array. - Peter Bala, May 13 2017
a(n) is the number of uniquely sorted permutations of length 2n+1 that avoid the patterns 231 and 4132. (A permutation is called uniquely sorted if it has exactly one preimage under West's stack-sorting map. See the Defant link.) - Colin Defant, Jun 08 2019
a(n) is the number of 132-avoiding permutations of length 3*n whose disjoint cycle decomposition contains only 3-cycles (a,b,c) with a>b>c. See the Archer and Graves reference. - Alexander Burstein, Oct 21 2021

Crossrefs

Row sums of number triangle A127631.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 1, 3][n+1],
          ((8*(4*n-11))*(4*n-5)*(4*n-9)*(2*n-5)*a(n-3)
          -(8*(4*n-5))*(n-1)*(22*n^2-94*n+99)*a(n-2)
          +8*n*(n-1)*(20*n^2-67*n+48)*a(n-1))/
          ((3*(4*n-9))*(n+1)*n*(n-1)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 06 2015
  • Mathematica
    a[n_] := Sum[m*(2*n-m-1)!*HypergeometricPFQ[{m/2+1/2, m/2, m-n}, {m, m-2*n+1}, 4]/(n!*(n-m)!), {m, 1, n}]; a[0]=1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 24 2012, after Vladimir Kruchinin *)
    a[n_] := CatalanNumber[n - 1] HypergeometricPFQ[{3/2, 2, 1 - n}, {3, 2 - 2 n}, 4];
    a[0] := 1; Table[a[n], {n, 0, 23}] (* Peter Luschny, May 12 2021 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(m*sum(binomial(2*k-m-1,k-1)*binomial(2*n-k-1,n-1),k,m,n),m,1,n)/n; /* Vladimir Kruchinin, Oct 08 2011 */
  • PARI
    {a(n)= if(n<1, n==0, polcoeff( serreverse( x*(1-x)^3*(1-x^3)/(1-x^2)^4 +x*O(x^n) ), n))} /* Michael Somos, May 04 2007 */
    
  • PARI
    {a(n)= local(A); if(n<1, n==0, A= serreverse( x-x^2 +x*O(x^n) ); polcoeff( 1/(1 - subst(A, x, A)), n))} /* Michael Somos, May 04 2007 */
    

Formula

a(n) = A127714(n+1, 2n+1).
G.f. A(x) satisfies: 0 = 1 - A(x) + A(x)^2 * x * c(x) where c(x) is the g.f. of A000108.
G.f.: 2/(1 + sqrt(2 * sqrt(1 - 4*x) - 1)). - Michael Somos, May 04 2007
a(n) = Sum_{k=0..n} A106566(n, k)*A000108(k). - Philippe Deléham, Jun 20 2007
a(n) = (Sum_{m=1..n} (m*Sum_{k=m..n} binomial(2*k-m-1, k-1)*binomial(2*n-k-1, n-1)))/n, a(0)=1. - Vladimir Kruchinin, Oct 08 2011
Conjecture: 3*n*(n-1)*(4*n-9)*(n+1)*a(n) - 8*n*(n-1)*(20*n^2-67*n+48)*a(n-1) + 8*(4*n-5)*(n-1)*(22*n^2-94*n+99)*a(n-2) - 8*(4*n-11)*(4*n-5)*(4*n-9)*(2*n-5)*a(n-3) = 0. - R. J. Mathar, May 04 2018
a(n) ~ 2^(4*n - 1/2) / (sqrt(Pi) * n^(3/2) * 3^(n - 1/2)). - Vaclav Kotesovec, Aug 14 2018
From Alexander Burstein, Nov 21 2019: (Start)
G.f.: A(x) = 1 + x*c(x)^2*m(x*c(x)^2), where m(x) is the g.f. of A001006 and c(x) is the g.f. of A000108.
G.f.: A(x) satisfies: A(-x*A(x)^5) = 1/A(x). (End)
From Peter Luschny, May 12 2021: (Start)
a(n) = Catalan(n - 1) * hypergeom([3/2, 2, 1 - n], [3, 2 - 2*n], 4) for n >= 1.
a(n) = A344056(n) / A344057(n). (End)
The G.f. satisfies the algebraic equation 0 = F^4*x - F^3 + 2*F^2 - 2*F + 1. - F. Chapoton, Oct 18 2021
D-finite with recurrence 3*n*(n-1)*(n+1)*a(n) -4*n*(7*n-2)*(n-1)*a(n-1) +8*(n-1)*(2*n^2+30*n-65)*a(n-2) +8*(56*n^3-520*n^2+1534*n-1445)*a(n-3) -32*(4*n-15)*(2*n-7)*(4*n-13)*a(n-4)=0. - R. J. Mathar, Aug 01 2022

Extensions

Better name from David Callan, Jun 03 2013

A251568 Expansion of e.g.f. exp(x*C(x)^2) where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers, A000108.

Original entry on oeis.org

1, 1, 5, 43, 529, 8501, 169021, 4010455, 110676833, 3484717129, 123320412181, 4847038223171, 209536628422705, 9882471447634813, 505033804901100749, 27802319803528367791, 1640388588050579832001, 103275015543414629215505, 6910877628962983581031333
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 529*x^4/4! + 8501*x^5/5! + ...
where
log(A(x)) = x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + ... + A000108(n)*x^n + ...
		

Crossrefs

Programs

  • Maple
    CatalanNumber := n -> binomial(2*n,n)/(n+1):
    a := n -> `if`(n=0, 1, n!*CatalanNumber(n)*hypergeom([1-n], [2+n], -1)):
    seq(simplify(a(n)), n=0..9); # Peter Luschny, May 04 2017
  • Mathematica
    Flatten[{1,Table[Sum[n!/k!*Binomial[2*n-1,n-k]*2*k/(n+k),{k,1,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 14 2015 *)
    a[0] = 1; a[n_] := (2n)!/(n+1)! Hypergeometric1F1[1-n, n+2, -1];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 03 2017, after Vladimir Kruchinin *)
  • PARI
    {a(n)=my(C=1);for(i=1,n,C=1+x*C^2 +x*O(x^n));n!*polcoef(exp(x*C^2),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n) = if(n==0, 1, sum(k=1, n, n!/k! * binomial(2*n-1, n-k) * 2*k/(n+k) ))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(serreverse(x*(1-x))^2/x))) \\ Seiichi Manyama, Mar 15 2025

Formula

a(n) = Sum_{k=0..n} (n!/k!) * binomial(2*n-1, n-k) * 2*k/(n+k) for n > 0 with a(0)=1.
E.g.f. A(x) satisfies: A'(x)/A(x) = C'(x) = C(x)^2 / sqrt(1-4*x) where C(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function.
Recurrence equation: a(n) = -(n^2 - 5*n +1)*a(n-1) + n*(2*n - 3)*(2*n - 4)*a(n-2) with a(0) = 1, a(1) = 1. It appears that a(n) - 1 is divisible by n*(n - 1) for n >= 2. - Peter Bala, Feb 14 2015
a(n) ~ 2^(2*n+1/2) * n^(n-1) / exp(n-1). - Vaclav Kotesovec, Feb 14 2015
a(n) are special values of the hypergeometric function 1F1: a(n) = 4^n*Gamma(n+1/2)*exp(-1)*hypergeom([2*n+1], [n+2], 1)/(sqrt(Pi)*(n+1)), for n>=1. - Karol A. Penson, Jun 01 2015
a(n) = ((2*n)!/(n+1)!)*hypergeometric([1-n],[n+2],-1), a(0)=1. - Vladimir Kruchinin, May 03 2017
From Seiichi Manyama, Mar 15 2025: (Start)
E.g.f.: exp( (1/x) * Series_Reversion( x*(1-x) )^2 ).
E.g.f.: exp( Series_Reversion( x/(1+x)^2 ) ). (End)

A080893 Expansion of e.g.f. exp(x*C(x)) = exp((1-sqrt(1-4*x))/2), where C(x) is the g.f. of the Catalan numbers A000108.

Original entry on oeis.org

1, 1, 3, 19, 193, 2721, 49171, 1084483, 28245729, 848456353, 28875761731, 1098127402131, 46150226651233, 2124008553358849, 106246577894593683, 5739439214861417731, 332993721039856822081, 20651350143685984386753
Offset: 0

Views

Author

Emanuele Munarini, Mar 31 2003

Keywords

Comments

Essentially the same as A001517: a(n+1) = A001517(n).
For k >= 2, the difference a(n+k) - a(n) is divisible by k. It follows that for each k, the sequence formed by taking a(n) modulo k is periodic with period dividing k. For example, modulo 10 the sequence becomes [1, 1, 3, 9, 3, 1, 1, 3, 9, 3, ...], a purely periodic sequence of period 5. Cf. A047974. - Peter Bala, Feb 11 2025

Crossrefs

Programs

  • Mathematica
    y[x_] := y[x] = 2(2x - 3)y[x - 1] + y[x - 2]; y[0] = 1; y[1] = 1; Table[y[n],{n,0,17}]
    With[{nn=20},CoefficientList[Series[Exp[(1-Sqrt[1-4x])/2],{x,0,nn}], x] Range[0,nn]!] (* Harvey P. Dale, Oct 30 2011 *)
  • PARI
    {a(n) = if( n<1, n = 1 - n); n! * polcoeff( exp( (1 - sqrt(1 - 4*x + x * O(x^n))) / 2), n)} /* Michael Somos, Apr 07 2012 */
    
  • Sage
    A080893 = lambda n: hypergeometric([-n+1, n], [], -1)
    [simplify(A080893(n)) for n in (0..19)] # Peter Luschny, Oct 17 2014

Formula

E.g.f.: exp((1-sqrt(1-4*x))/2).
D-finite with recurrence: a(n+2) = 2*(2*n + 1)*a(n+1) + a(n).
Recurrence: y(n+1) = Sum_{k = 0..n} binomial(n, k)*binomial(2k, k)*k!*y(n-k).
a(1 - n) = a(n). a(n + 1) = A001517(n). - Michael Somos, Apr 07 2012
G.f.: 1 + x/Q(0), where Q(k)= 1 - x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) ~ 2^(2*n-3/2)*n^(n-1)/exp(n-1/2). - Vaclav Kotesovec, Jun 26 2013
a(n) = hypergeom([-n+1, n], [], -1). - Peter Luschny, Oct 17 2014
a(n) = Sum_{k=0..n} (-4)^(n-k) * Stirling1(n,k) * A009235(k) = (-4)^n * Sum_{k=0..n} (1/2)^k * Stirling1(n,k) * Bell_k(-1/2), where Bell_n(x) is n-th Bell polynomial. - Seiichi Manyama, Aug 02 2024

A143409 Square array read by antidiagonals: form the Euler-Seidel matrix for the sequence {k!} and then divide column k by k!.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 16, 11, 4, 1, 65, 49, 19, 5, 1, 326, 261, 106, 29, 6, 1, 1957, 1631, 685, 193, 41, 7, 1, 13700, 11743, 5056, 1457, 316, 55, 8, 1, 109601, 95901, 42079, 12341, 2721, 481, 71, 9, 1, 986410, 876809, 390454, 116125, 25946, 4645, 694, 89, 10, 1
Offset: 0

Views

Author

Peter Bala, Aug 14 2008

Keywords

Comments

The Euler-Seidel matrix for the sequence {k!} is array A076571 read as a square, whose k-th column entries have a common factor of k!. Removing these common factors gives the current table.
This table is closely connected to the constant 1/e. The row, column and diagonal entries of this table occur in series acceleration formulas for 1/e.
For a similar table based on the differences of the sequence {k!} and related to the constant e, see A086764. For other arrays similarly related to constants see A143410 (for sqrt(e)), A143411 (for 1/sqrt(e)), A008288 (for log(2)), A108625 (for zeta(2)) and A143007 (for zeta(3)).

Examples

			The Euler-Seidel matrix for the sequence {k!} begins
==============================================
n\k|.....0.....1.....2.....3.....4.....5.....6
==============================================
0..|.....1.....1.....2.....6....24...120...720
1..|.....2.....3.....8....30...144...840
2..|.....5....11....38...174...984
3..|....16....49...212..1158
4..|....65...261..1370
5..|...326..1631
6..|..1957
...
Dividing the k-th column by k! gives
==============================================
n\k|.....0.....1.....2.....3.....4.....5.....6
==============================================
0..|.....1.....1.....1.....1.....1.....1.....1
1..|.....2.....3.....4.....5.....6.....7
2..|.....5....11....19....29....41
3..|....16....49...106...193
4..|....65...261...685
5..|...326..1631
6..|..1957
...
Examples of series formula for 1/e:
Row 2: 1/e = 2*(1/5 - 1/(1!*5*11) + 1/(2!*11*19) - 1/(3!*19*29) + ...).
Column 4: 24/e = 9 - (0!/(1*6) + 1!/(6*41) + 2!/(41*316) + ...).
...
Displayed as a triangle:
0 |     1
1 |     2,     1
2 |     5,     3,    1
3 |    16,    11,    4,    1
4 |    65,    49,   19,    5,   1
5 |   326,   261,  106,   29,   6,  1
6 |  1957,  1631,  685,  193,  41,  7, 1
7 | 13700, 11743, 5056, 1457, 316, 55, 8, 1
		

Crossrefs

Cf. A008288, A076571, A086764, A108625, A143007, A143410, A143411, A143413, A001517 (main diagonal), A028387 (row 2), A000522 (column 0), A001339 (column 1), A082030 (column 2), A095000 (column 3), A095177 (column 4).

Programs

  • Maple
    T := (n, k) -> 1/k!*add(binomial(n,j)*(k+j)!, j = 0..n):
    for n from 0 to 9 do seq(T(n, k), k = 0..9) end do;
    # Alternate:
    T:= proc(n,k) option remember;
      if n = 0 then return 1 fi;
      (n+k)*procname(n-1,k) + procname(n-1,k-1);
    end proc:
    seq(seq(T(s-n,n),n=0..s),s=0..10); # Robert Israel, Jul 07 2017
    # Or:
    A143409 := (n,k) -> hypergeom([k+1, k-n], [], -1):
    seq(seq(simplify(A143409(n,k)),k=0..n),n=0..9); # Peter Luschny, Oct 05 2017
  • Mathematica
    T[n_, k_] := HypergeometricPFQ[{k+1,k-n}, {}, -1];
    Table[T[n,k], {n,0,9}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2017 *)

Formula

T(n,k) = (1/k!)*Sum_{j = 0..n} binomial(n,j)*(k+j)!.
T(n,k) = ((n+k)!/k!)*Num_Pade(n,k), where Num_Pade(n,k) denotes the numerator of the Padé approximation for the function exp(x) of degree (n,k) evaluated at x = 1.
Recurrence relations:
T(n,k) = T(n-1,k) + (k+1)*T(n-1,k+1);
T(n,k) = (n+k)*T(n-1,k) + T(n-1,k-1).
E.g.f. for column k: exp(y)/(1-y)^(k+1).
E.g.f. for array: exp(y)/(1-x-y) = (1 + x + x^2 + ...) + (2 + 3*x + 4*x^2 + ...)*y + (5 + 11*x + 19*x^2 + ...)*y^2/2! + ... .
Row n lists the values of the Poisson-Charlier polynomial x^(n) + C(n,1)*x^(n-1) + C(n,2)*x^(n-2) + ... + C(n,n) for x = 1,2,3,..., where x^(m) denotes the rising factorial x*(x+1)*...*(x+m-1).
Main diagonal is A001517.
Series formulas for 1/e:
Row n: 1/e = n!*[1/T(n,0) - 1/(1!*T(n,0)*T(n,1)) + 1/(2!*T(n,1)*T(n,2)) - 1/(3!*T(n,2)*T(n,3)) + ...].
Column k: k!/e = A000166(k) + (-1)^(k+1)*[0!/(T(0,k)*T(1,k)) + 1!/(T(1,k)*T(2,k)) + 2!/(T(2,k)*T(3,k)) + ...].
Main diagonal: 1/e = 1 - 2*Sum_{n>=0} (-1)^n/(T(n,n)*T(n+1,n+1)) = 1 - 2*[1/(1*3) - 1/(3*19) + 1/(19*193) - ...].
Second subdiagonal: 1/e = 2*(1^2/(1*5) - 2^2/(5*49) + 3^2/(49*685) - ...).
Compare with A143413.
From Peter Luschny, Oct 05 2017: (Start)
T(n, k) = hypergeom([k+1, k-n], [], -1).
When seen as a triangular array then the row sums are A273596 and the alternating row sums are A003470. (End)
Showing 1-10 of 28 results. Next