A052895
E.g.f.: (1/2)/(exp(x) - 1) * (1 - (5 - 4*exp(x))^(1/2)).
Original entry on oeis.org
1, 1, 5, 43, 545, 9211, 195305, 4990483, 149371745, 5128125451, 198696086105, 8578228640323, 408387804764945, 21256203702751291, 1200890923560864905, 73191086773679576563, 4786857909878612350145, 334410103752029126714731
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{C=Set(Z,1 <= card),S=Sequence(B),B=Prod(C,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[(1/2)/(E^x-1)*(1-(5-4*E^x)^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
a[n_] = Sum[k! StirlingS2[n, k] CatalanNumber[k], {k, 0, n}];
Table[a[n], {n, 0, 17}] (* Peter Luschny, Jan 15 2018 *)
A380512
Expansion of e.g.f. exp(x*G(x)^3) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 7, 91, 1753, 45001, 1447471, 56041987, 2539200721, 131859347473, 7723214721271, 503787793244011, 36223369111466857, 2846582772323685721, 242741539845295265503, 22325483241906758894611, 2202979676409063904473121, 232158319570869255177386017, 26024052774273208806612761191
Offset: 0
-
a(n) = if(n==0, 1, (n-1)!*pollaguerre(n-1, 2*n+1, -1));
A380516
Expansion of e.g.f. exp(x*G(x)^4) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 9, 157, 4129, 146001, 6502681, 349790029, 22069858497, 1598577634369, 130757736096361, 11922399644742621, 1199121973234651489, 131887738425602277457, 15748194681225620534649, 2028885239529647188594381, 280525944581514367875035521, 41434950383158772951280658689
Offset: 0
-
Join[{1}, Table[(n-1)! * LaguerreL[n-1, 3*n+1, -1], {n, 1, 20}]] (* Vaclav Kotesovec, Jan 26 2025 *)
-
a(n) = if(n==0, 1, (n-1)!*pollaguerre(n-1, 3*n+1, -1));
A251569
E.g.f.: exp(x*G(x)) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 3, 25, 385, 8661, 255211, 9280573, 401106945, 20075281705, 1141518933811, 72671265032961, 5119905952974913, 395447744211899965, 33224120086567957275, 3016468531370564888101, 294296638636407727046401, 30704676897459478866984273, 3411268107193733242307499235
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 25*x^3/3! + 385*x^4/4! + 8661*x^5/5! +...
such that A(x) = exp(x*G(x)) where G(x) = 1 + x*G(x)^3:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
-
Flatten[{1,Table[Sum[n!/k! * Binomial[3*n-2*k-1, n-k] * k/(2*n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 15 2015 *)
-
{a(n)=local(G=1);for(i=1,n,G=1+x*G^3 +x*O(x^n));n!*polcoeff(exp(x*G),n)}
for(n=0,20,print1(a(n),", "))
-
{a(n) = if(n==0,1,sum(k=1,n, n!/k! * binomial(3*n-2*k-1, n-k) * k/(2*n-k) ))}
for(n=0,20,print1(a(n),", "))
A380511
Expansion of e.g.f. exp(x*G(x)^2) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 5, 55, 961, 23141, 711421, 26631235, 1175535425, 59786520841, 3442729157461, 221413508687471, 15730688410899265, 1223574846548300845, 103417508018836074701, 9437941200860641295611, 924934291227615821904001, 96881241931552168636182545, 10801002623361396194857667365
Offset: 0
-
a(n) = if(n==0, 1, 2*n!*sum(k=0, n-1, binomial(2*n+k, k)/((2*n+k)*(n-k-1)!)));
A250917
Expansion of e.g.f. exp( x*C(x)^3 ) where C(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers, A000108.
Original entry on oeis.org
1, 1, 7, 73, 1033, 18541, 403831, 10351237, 305355793, 10192132153, 379819484551, 15634219476481, 704566985120857, 34506514429777573, 1825081888365736183, 103685565729559782781, 6297505655719537293601, 407233553972252986277617, 27935786938445348562454663
Offset: 0
E.g.f.: A(x) = 1 + x + 7*x^2/2! + 73*x^3/3! + 1033*x^4/4! + 18541*x^5/5! +...
such that log(A(x)) = x*C(x)^3,
log(A(x)) = x + 3*x^2 + 9*x^3 + 28*x^4 + 90*x^5 + 297*x^6 + 1001*x^7 +...
where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
-
{a(n)=my(C=1); for(i=1, n, C=1+x*C^2 +x*O(x^n));
n!*polcoef(exp(x*C^3), n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = if(n==0, 1, sum(k=0, n, n!/k! * binomial(2*n+k-1, n-k) * 3*k/(n+2*k) ))}
for(n=0, 20, print1(a(n), ", "))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(serreverse(x*(1-x))^3/x^2))) \\ Seiichi Manyama, Mar 15 2025
A380491
a(n) = n! * Sum_{k=0..n} binomial(2*n-3,k)/(n-k)!.
Original entry on oeis.org
1, 0, 3, 34, 501, 9276, 207775, 5470158, 165625929, 5671386136, 216730118331, 9144481575450, 422249317829053, 21180324426577044, 1146880568461500951, 66677192513929212166, 4142571510546929867025, 273910161452560881843888, 19204878684852222745880179
Offset: 0
A380492
a(n) = n! * Sum_{k=0..n} binomial(2*n-2,k)/(n-k)!.
Original entry on oeis.org
1, 1, 7, 73, 1045, 19081, 424051, 11109337, 335262313, 11453449105, 436944953791, 18412283563081, 849345673881277, 42570185481576793, 2303643608370636715, 133859418832759525081, 8312945340897388101841, 549460711493172343519777, 38513032385247860120975863
Offset: 0
A380493
a(n) = n! * Sum_{k=0..n} binomial(2*n+3,k)/(n-k)!.
Original entry on oeis.org
1, 6, 57, 748, 12585, 259026, 6315001, 178134552, 5711078673, 205209960670, 8171229107481, 357235056697476, 17014791129640057, 877089297426429738, 48657292133825026905, 2890717184573264397616, 183125115830192864360481, 12323226433255671469949622
Offset: 0
A380636
Expansion of e.g.f. exp(x*C(2*x)^2) where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers, A000108.
Original entry on oeis.org
1, 1, 9, 145, 3409, 105921, 4102681, 190630609, 10340890785, 641787925249, 44866443580201, 3489524955627921, 298914951848510449, 27966383049400396225, 2837759948683874979129, 310425081738609550495441, 36418950255827044479693121, 4561668082989623411575958529
Offset: 0
-
nmax = 20; CoefficientList[Series[E^((1 - Sqrt[1 - 8*x])^2 / (16*x)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jan 29 2025 *)
-
a(n) = if(n==0, 1, 2^(n-1)*(n-1)!*pollaguerre(n-1, n+1, -1/2));
Showing 1-10 of 13 results.
Comments