cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A052895 E.g.f.: (1/2)/(exp(x) - 1) * (1 - (5 - 4*exp(x))^(1/2)).

Original entry on oeis.org

1, 1, 5, 43, 545, 9211, 195305, 4990483, 149371745, 5128125451, 198696086105, 8578228640323, 408387804764945, 21256203702751291, 1200890923560864905, 73191086773679576563, 4786857909878612350145, 334410103752029126714731
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{C=Set(Z,1 <= card),S=Sequence(B),B=Prod(C,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1/2)/(E^x-1)*(1-(5-4*E^x)^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
    a[n_] = Sum[k! StirlingS2[n, k] CatalanNumber[k], {k, 0, n}];
    Table[a[n], {n, 0, 17}] (* Peter Luschny, Jan 15 2018 *)

Formula

E.g.f.: (1/2)/(exp(x) - 1)*(1 - (5 - 4*exp(x))^(1/2)).
a(n) = Sum_{k=0..n} k!*Stirling2(n,k)*Catalan(k). - Vladimir Kruchinin, Sep 15 2010
a(n) ~ sqrt(10)*n^(n-1) / (exp(n)*(log(5/4))^(n-1/2)). - Vaclav Kotesovec, Sep 30 2013
E.g.f.: 1/(1 + (1 - exp(x))/(1 + (1 - exp(x))/(1 + (1 - exp(x))/(1 + (1 - exp(x))/(1 + ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 18 2017
From Peter Bala, Jan 15 2018: (Start)
E.g.f.: C(exp(x) - 1), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for A000108. Cf. A006531.
Conjecture: for fixed k = 1,2,..., the sequence a(n) (mod k) is eventually periodic with the exact period dividing phi(k), where phi(k) is the Euler totient function A000010. For example, modulo 10 the sequence becomes (1, 1, 5, 3, 5, 1, 5, 3, 5, ...), with an apparent period 1, 5, 3, 5 of length 4 = phi(10) beginning at a(1). (End)
O.g.f.: 1 + Sum_{k>=1} A000108(k)*Product_{r=1..k} r*x/(1 - r*x). - Petros Hadjicostas, Jun 12 2020

Extensions

New name using e.g.f. from Vaclav Kotesovec, Sep 30 2013

A380512 Expansion of e.g.f. exp(x*G(x)^3) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 7, 91, 1753, 45001, 1447471, 56041987, 2539200721, 131859347473, 7723214721271, 503787793244011, 36223369111466857, 2846582772323685721, 242741539845295265503, 22325483241906758894611, 2202979676409063904473121, 232158319570869255177386017, 26024052774273208806612761191
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, (n-1)!*pollaguerre(n-1, 2*n+1, -1));

Formula

E.g.f.: exp(G(x)-1), where G(x) is described above.
a(n) = (n-1)! * Sum_{k=0..n-1} binomial(3*n,k)/(n-k-1)! for n > 0.
a(n+1) = n! * LaguerreL(n, 2*n+3, -1).
a(n) = (-1)^(n+1)*U(1-n, 2*(1+n), -1), where U is the Tricomi confluent hypergeometric function. - Stefano Spezia, Jan 26 2025
E.g.f.: exp( Series_Reversion( x/(1+x)^3 ) ). - Seiichi Manyama, Mar 15 2025

A380516 Expansion of e.g.f. exp(x*G(x)^4) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 9, 157, 4129, 146001, 6502681, 349790029, 22069858497, 1598577634369, 130757736096361, 11922399644742621, 1199121973234651489, 131887738425602277457, 15748194681225620534649, 2028885239529647188594381, 280525944581514367875035521, 41434950383158772951280658689
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[(n-1)! * LaguerreL[n-1, 3*n+1, -1], {n, 1, 20}]] (* Vaclav Kotesovec, Jan 26 2025 *)
  • PARI
    a(n) = if(n==0, 1, (n-1)!*pollaguerre(n-1, 3*n+1, -1));

Formula

E.g.f.: exp(G(x)-1), where G(x) is described above.
a(n) = (n-1)! * Sum_{k=0..n-1} binomial(4*n,k)/(n-k-1)! for n > 0.
a(n+1) = n! * LaguerreL(n, 3*n+4, -1).
a(n) = (-1)^(n+1)*U(1-n, 2+3*n, -1), where U is the Tricomi confluent hypergeometric function. - Stefano Spezia, Jan 26 2025
a(n) ~ 2^(8*n + 1) * n^(n-1) / (exp(n - 1/3) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Jan 26 2025
E.g.f.: exp( Series_Reversion( x/(1+x)^4 ) ). - Seiichi Manyama, Mar 15 2025

A251569 E.g.f.: exp(x*G(x)) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 3, 25, 385, 8661, 255211, 9280573, 401106945, 20075281705, 1141518933811, 72671265032961, 5119905952974913, 395447744211899965, 33224120086567957275, 3016468531370564888101, 294296638636407727046401, 30704676897459478866984273, 3411268107193733242307499235
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2014

Keywords

Comments

It appears that a(n) - 1 is divisible by n*(n - 1) for n >= 2. Cf. A251568. - Peter Bala, Feb 15 2015

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 25*x^3/3! + 385*x^4/4! + 8661*x^5/5! +...
such that A(x) = exp(x*G(x)) where G(x) = 1 + x*G(x)^3:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[n!/k! * Binomial[3*n-2*k-1, n-k] * k/(2*n-k),{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 15 2015 *)
  • PARI
    {a(n)=local(G=1);for(i=1,n,G=1+x*G^3 +x*O(x^n));n!*polcoeff(exp(x*G),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n) = if(n==0,1,sum(k=1,n, n!/k! * binomial(3*n-2*k-1, n-k) * k/(2*n-k) ))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} n!/k! * binomial(3*n-2*k-1, n-k) * k/(2*n-k) for n>0 with a(0)=1.
Recurrence: 2*(2*n-1)*(54*n^2 - 171*n + 116)*a(n) = (1458*n^4 - 7533*n^3 + 12474*n^2 - 6624*n - 7)*a(n-1) - (324*n^3 - 1080*n^2 + 759*n + 95)*a(n-2) + 8*(n-2)*(54*n^2 - 63*n - 1)*a(n-3). - Vaclav Kotesovec, Feb 15 2015

A380511 Expansion of e.g.f. exp(x*G(x)^2) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 5, 55, 961, 23141, 711421, 26631235, 1175535425, 59786520841, 3442729157461, 221413508687471, 15730688410899265, 1223574846548300845, 103417508018836074701, 9437941200860641295611, 924934291227615821904001, 96881241931552168636182545, 10801002623361396194857667365
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 2*n!*sum(k=0, n-1, binomial(2*n+k, k)/((2*n+k)*(n-k-1)!)));

Formula

a(n) = 2 * n! * Sum_{k=0..n-1} binomial(2*n+k,k)/((2*n+k) * (n-k-1)!) for n > 0.
a(n) = U(1-n, 2-3*n, 1), where U is the Tricomi confluent hypergeometric function. - Stefano Spezia, Jan 26 2025
E.g.f.: exp( Series_Reversion( x*(1-x)^2 ) ). - Seiichi Manyama, Mar 15 2025

A250917 Expansion of e.g.f. exp( x*C(x)^3 ) where C(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers, A000108.

Original entry on oeis.org

1, 1, 7, 73, 1033, 18541, 403831, 10351237, 305355793, 10192132153, 379819484551, 15634219476481, 704566985120857, 34506514429777573, 1825081888365736183, 103685565729559782781, 6297505655719537293601, 407233553972252986277617, 27935786938445348562454663
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Comments

In general, if k>0 and e.g.f. = exp(x*C(x)^k) where C(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers, then a(n) ~ k * 2^(2*n + k - 5/2) * n^(n-1) / exp(n - 2^(k-2)). - Vaclav Kotesovec, Aug 22 2017

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 73*x^3/3! + 1033*x^4/4! + 18541*x^5/5! +...
such that log(A(x)) = x*C(x)^3,
log(A(x)) = x + 3*x^2 + 9*x^3 + 28*x^4 + 90*x^5 + 297*x^6 + 1001*x^7 +...
where C(x) = 1 + x*C(x)^2 is the g.f. of A000108.
		

Crossrefs

Programs

  • PARI
    {a(n)=my(C=1); for(i=1, n, C=1+x*C^2 +x*O(x^n));
    n!*polcoef(exp(x*C^3), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0, 1, sum(k=0, n, n!/k! * binomial(2*n+k-1, n-k) * 3*k/(n+2*k) ))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(serreverse(x*(1-x))^3/x^2))) \\ Seiichi Manyama, Mar 15 2025

Formula

a(n) = Sum_{k=0..n} n!/k! * binomial(2*n+k-1, n-k) * 3*k/(n+2*k) for n>0 with a(0)=1.
a(n) ~ 3 * 2^(2*n+1/2) * n^(n-1) / exp(n-2). - Vaclav Kotesovec, Aug 22 2017
Conjecture D-finite with recurrence: +2*a(n) +(-11*n+20)*a(n-1) +(n^3+9*n^2-116*n+164)*a(n-2) +(-4*n^4+35*n^3+n^2-317*n+342)*a(n-3) -6*(n-3)*(6*n^3-50*n^2+147*n-176)*a(n-4) +12*(n-5)*(2*n-9)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 25 2020
E.g.f.: exp( (1/x)^2 * Series_Reversion( x*(1-x) )^3 ). - Seiichi Manyama, Mar 15 2025

A380491 a(n) = n! * Sum_{k=0..n} binomial(2*n-3,k)/(n-k)!.

Original entry on oeis.org

1, 0, 3, 34, 501, 9276, 207775, 5470158, 165625929, 5671386136, 216730118331, 9144481575450, 422249317829053, 21180324426577044, 1146880568461500951, 66677192513929212166, 4142571510546929867025, 273910161452560881843888, 19204878684852222745880179
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*pollaguerre(n, n-3, -1);

Formula

a(n) = n! * LaguerreL(n, n-3, -1).
a(n) = n! * [x^n] exp(x/(1 - x))/(1 - x)^(n-2).

A380492 a(n) = n! * Sum_{k=0..n} binomial(2*n-2,k)/(n-k)!.

Original entry on oeis.org

1, 1, 7, 73, 1045, 19081, 424051, 11109337, 335262313, 11453449105, 436944953791, 18412283563081, 849345673881277, 42570185481576793, 2303643608370636715, 133859418832759525081, 8312945340897388101841, 549460711493172343519777, 38513032385247860120975863
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*pollaguerre(n, n-2, -1);

Formula

a(n) = n! * LaguerreL(n, n-2, -1).
a(n) = n! * [x^n] exp(x/(1 - x))/(1 - x)^(n-1).

A380493 a(n) = n! * Sum_{k=0..n} binomial(2*n+3,k)/(n-k)!.

Original entry on oeis.org

1, 6, 57, 748, 12585, 259026, 6315001, 178134552, 5711078673, 205209960670, 8171229107481, 357235056697476, 17014791129640057, 877089297426429738, 48657292133825026905, 2890717184573264397616, 183125115830192864360481, 12323226433255671469949622
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*pollaguerre(n, n+3, -1);

Formula

a(n) = n! * LaguerreL(n, n+3, -1).
a(n) = n! * [x^n] exp(x/(1 - x))/(1 - x)^(n+4).

A380636 Expansion of e.g.f. exp(x*C(2*x)^2) where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers, A000108.

Original entry on oeis.org

1, 1, 9, 145, 3409, 105921, 4102681, 190630609, 10340890785, 641787925249, 44866443580201, 3489524955627921, 298914951848510449, 27966383049400396225, 2837759948683874979129, 310425081738609550495441, 36418950255827044479693121, 4561668082989623411575958529
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[E^((1 - Sqrt[1 - 8*x])^2 / (16*x)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jan 29 2025 *)
  • PARI
    a(n) = if(n==0, 1, 2^(n-1)*(n-1)!*pollaguerre(n-1, n+1, -1/2));

Formula

E.g.f.: exp( (C(2*x)-1)/2 ), where C(x) is described above.
a(n) = (n-1)! * Sum_{k=0..n-1} 2^k * binomial(2*n,k)/(n-k-1)! for n > 0.
a(n+1) = 2^n * n! * LaguerreL(n, n+2, -1/2).
From Vaclav Kotesovec, Jan 29 2025: (Start)
E.g.f.: exp((1 - sqrt(1 - 8*x))^2 / (16*x)).
a(n) ~ 2^(3*n - 1/2) * n^(n-1) / exp(n - 1/2). (End)
a(n) = (-2)^(n-1)*U(1-n, 2+n, -1/2), where U is the Tricomi confluent hypergeometric function. - Stefano Spezia, Jan 29 2025
E.g.f.: exp( Series_Reversion( x/(1+2*x)^2 ) ). - Seiichi Manyama, Mar 16 2025
Showing 1-10 of 13 results. Next