cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A006531 Semiorders on n elements.

Original entry on oeis.org

1, 1, 3, 19, 183, 2371, 38703, 763099, 17648823, 468603091, 14050842303, 469643495179, 17315795469063, 698171064855811, 30561156525545103, 1443380517590979259, 73161586346500098903, 3961555049961803092531, 228225249142441259147103, 13938493569348563803135339
Offset: 0

Views

Author

Keywords

Comments

Labeled semiorders on n elements: (1+3) and (2+2)-free posets. - Detlef Pauly (dettodet(AT)yahoo.de), Dec 27 2002
Labeled incomplete binary trees (every vertex has a left child, a right child, neither, or both) in which every vertex with a right child but no left child has a label greater than the label of its right child. - Ira M. Gessel, Nov 09 2013

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.30.

Crossrefs

Cf. A000108 (unlabeled semiorders: Catalan numbers), A052895.

Programs

  • Maple
    A006531 := n->add(stirling2(n,k)*k!*A001006(k-1),k=1..n);
  • Mathematica
    m[n_] := m[n] = m[n-1] + Sum[ m[k]*m[n-k-2], {k, 0, n-2}]; m[0] = a[0] = 1; a[n_] := Sum[ StirlingS2[n, k]*k!*m[k-1], {k, 1, n}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 24 2012, after Maple *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, (2*m)!/(m+1)!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */

Formula

E.g.f.: C(1-exp(-x)), where C(x) = (1 - sqrt(1 - 4*x)) / (2*x) is the ordinary g.f. for the Catalan numbers A000108. [corrected by Joel B. Lewis, Mar 29 2011]
a(n) = Sum_{k=1..n} S(n, k) * k! * M(k-1), S(n, k): Stirling number of the second kind, M(n): Motzkin number, A001006. - Detlef Pauly, Jun 06 2002
O.g.f.: Sum_{n>=1} (2*n)!/(n+1)! * x^n / Product_{k=0..n} (1+k*x). - Paul D. Hanna, Jul 20 2011
a(n) ~ n! * sqrt(3)*(log(4/3))^(1/2-n)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 13 2013
E.g.f.: 1/(1 + (exp(-x) - 1)/(1 + (exp(-x) - 1)/(1 + (exp(-x) - 1)/(1 + (exp(-x) - 1)/(1 + ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 18 2017
From Peter Bala, Jan 15 2018: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n+k)*Catalan(k)*k!*Stirling2(n,k). Cf. A052895.
Conjecture: for fixed k = 1,2,..., the sequence a(n) (mod k) is eventually periodic with the exact period dividing phi(k), where phi(k) is Euler's totient function A000010. For example, modulo 10 the sequence becomes (1, 1, 3, 9, 3, 1, 3, 9, 3, ...) with an apparent period 1, 3, 9, 3 of length 4 = phi(10) beginning at a(1). (End)
Consider the transformation of a sequence u given by T(u)(m) = (-1)^m*Sum_{n=0..m} (u(n)/(n+1))*(Sum_{k=0..n}(-1)^k*binomial(n,k)*k^m). If u(n) = 1 then T(u)(n) = Bernoulli(n) (with Bernoulli(1) = 1/2), if u(n) = binomial(2*n,n) then T(u)(n) = a(n). - Peter Luschny, Jul 09 2020

A295238 Expansion of e.g.f. 2/(1 + sqrt(1 - 4*x*exp(x))).

Original entry on oeis.org

1, 1, 6, 57, 796, 14785, 344046, 9640225, 316255416, 11896233345, 504918768250, 23874754106401, 1244712973780068, 70940791877082049, 4388291507415513894, 292823509879910802465, 20966854494419642792176, 1603540841320336494905089, 130464295561360336835272050
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 18 2017

Keywords

Comments

Inverse binomial transform of A194471.

Crossrefs

Programs

  • Maple
    a:=series(2/(1+sqrt(1-4*x*exp(x))),x=0,19): seq(n!*coeff(a,x,n),n=0..18); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 18; CoefficientList[Series[2/(1 + Sqrt[1 - 4 x Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 18; CoefficientList[Series[1/(1 + ContinuedFractionK[-x Exp[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^(n - k) Binomial[n, k] k! Sum[(m + 1)^(k - m - 1) Binomial[2 m, m]/(k - m)!, {m, 0, k}], {k, 0, n}], {n, 0, 18}]
  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*k, k)/((k+1)*(n-k)!)); \\ Seiichi Manyama, Aug 15 2023

Formula

E.g.f.: 1/(1 - x*exp(x)/(1 - x*exp(x)/(1 - x*exp(x)/(1 - x*exp(x)/(1 - ...))))), a continued fraction.
a(n) ~ sqrt(2*(1 + LambertW(1/4))) * n^(n-1) / ((LambertW(1/4))^n * exp(n)). - Vaclav Kotesovec, Nov 18 2017
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(2*k+1,k)/( (2*k+1)*(n-k)! ) = n! * Sum_{k=0..n} k^(n-k) * A000108(k)/(n-k)!. - Seiichi Manyama, Aug 15 2023

A367161 E.g.f. satisfies A(x) = 1 + A(x)^3 * (exp(x) - 1).

Original entry on oeis.org

1, 1, 7, 91, 1795, 47851, 1612027, 65731891, 3148530595, 173319612571, 10782796483147, 748237171338691, 57299882326956595, 4800323120225595691, 436719009263680421467, 42878536726317406241491, 4519124182661042439577795, 508885588456024192452993211
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(3*k)!/(2*k+1)! * StirlingS2[n,k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 10 2023 *)
  • PARI
    a(n) = sum(k=0, n, (3*k)!/(2*k+1)!*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (3*k)!/(2*k+1)! * Stirling2(n,k).
a(n) ~ sqrt(93) * n^(n-1) / (2^(5/2) * log(31/27)^(n - 1/2) * exp(n)). - Vaclav Kotesovec, Nov 10 2023

A087138 Expansion of (1-sqrt(1-4*log(1+x)))/2.

Original entry on oeis.org

1, 1, 8, 64, 824, 12968, 252720, 5789712, 153169440, 4589004192, 153643615872, 5684390364288, 230307823878144, 10141452865049088, 482259966649655808, 24630247225278881280, 1344614199041549399040, 78137673004382654223360
Offset: 1

Views

Author

Vladeta Jovovic, Oct 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1-Sqrt[1-4*Log[1+x]])/2, {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, May 03 2015 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace((1-sqrt(1-4*log(1+x)))/2)) \\ G. C. Greubel, May 24 2017

Formula

a(n) = Sum_{k=1..n} Stirling1(n, k)*k!*Catalan(k-1).
a(n) ~ n! / (2*exp(1/8)*sqrt(Pi) * (exp(1/4)-1)^(n-1/2) * n^(3/2)). - Vaclav Kotesovec, May 03 2015
From Seiichi Manyama, Sep 09 2024: (Start)
E.g.f. satisfies A(x) = (log(1 + x)) / (1 - A(x)).
E.g.f.: Series_Reversion( exp(x * (1 - x)) - 1 ). (End)

A377454 E.g.f. satisfies A(x) = 1/(1 - A(x) * (exp(x) - 1))^4.

Original entry on oeis.org

1, 4, 56, 1384, 50216, 2422024, 146279816, 10633540264, 904699882856, 88234503004744, 9707888368200776, 1189726637663987944, 160741241332049376296, 23738834426406792534664, 3804763374380021378204936, 657774175587674349626736424, 122016250347540672925706274536
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 4*sum(k=0, n, (5*k+3)!/(4*k+4)!*stirling(n, k, 2));

Formula

E.g.f.: B(x)^4, where B(x) is the e.g.f. of A377451.
a(n) = 4 * Sum_{k=0..n} (5*k+3)!/(4*k+4)! * Stirling2(n,k).

A087152 Expansion of (1-sqrt(1-4*log(1+x)))/log(1+x)/2.

Original entry on oeis.org

1, 3, 20, 194, 2554, 42226, 843744, 19769256, 531768120, 16152296424, 546895099200, 20425461026736, 834215500905552, 36988602430554576, 1769524998544143360, 90851799797294235264, 4982968503277896871296
Offset: 1

Views

Author

Vladeta Jovovic, Oct 18 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1-Sqrt[1-4*Log[1+x]])/Log[1+x]/2, {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, May 03 2015 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace((1-sqrt(1-4*log(1+x)))/log(1+x)/2 - 1)) \\ G. C. Greubel, May 24 2017

Formula

a(n) = Sum_{k=0..n} Stirling1(n, k)*k!*Catalan(k).
a(n) ~ 2*n! / (exp(1/8)*sqrt(Pi) * (exp(1/4)-1)^(n-1/2) * n^(3/2)). - Vaclav Kotesovec, May 03 2015

A295239 Expansion of e.g.f. 2/(1 + sqrt(1 + 4*x*exp(x))).

Original entry on oeis.org

1, -1, 2, -9, 68, -705, 9234, -146209, 2717000, -57986433, 1397949830, -37576332321, 1114326129564, -36141571087297, 1272713716466906, -48360394499269665, 1972269941821097744, -85929979225787811585, 3983422470176606823054, -195765982110500512129057
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 18 2017

Keywords

Crossrefs

Programs

  • Maple
    a:=series(2/(1+sqrt(1+4*x*exp(x))),x=0,20): seq(n!*coeff(a,x,n),n=0..19); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 19; CoefficientList[Series[2/(1 + Sqrt[1 + 4 x Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 19; CoefficientList[Series[1/(1 + ContinuedFractionK[x Exp[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^(n - k) Binomial[n, k] k! Sum[(-1)^m (m + 1)^(k - m - 1) Binomial[2 m, m]/(k - m)!, {m, 0, k}], {k, 0, n}], {n, 0, 19}]
  • PARI
    a(n) = n!*sum(k=0, n, (-1)^k*k^(n-k)*binomial(2*k, k)/((k+1)*(n-k)!)); \\ Seiichi Manyama, Oct 30 2024

Formula

E.g.f.: 1/(1 + x*exp(x)/(1 + x*exp(x)/(1 + x*exp(x)/(1 + x*exp(x)/(1 + ...))))), a continued fraction.
a(n) ~ sqrt(2*(1+LambertW(-1/4))) * n^(n-1) / (exp(n) * (LambertW(-1/4))^n). - Vaclav Kotesovec, Nov 18 2017
a(n) = n! * Sum_{k=0..n} (-1)^k * k^(n-k) * A000108(k)/(n-k)!. - Seiichi Manyama, Oct 30 2024

A377453 E.g.f. satisfies A(x) = 1/(1 - A(x) * (exp(x) - 1))^3.

Original entry on oeis.org

1, 3, 33, 639, 18177, 687663, 32585793, 1858893039, 124128928257, 9502575055983, 820716875385153, 78959656742857839, 8375163183606235137, 971063889443489669103, 122194096152956362997313, 16586054767142612489229039, 2415658529914018225123490817, 375779208568915395913102663023
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*sum(k=0, n, (4*k+2)!/(3*k+3)!*stirling(n, k, 2));

Formula

E.g.f.: B(x)^3, where B(x) is the e.g.f. of A377450.
a(n) = 3 * Sum_{k=0..n} (4*k+2)!/(3*k+3)! * Stirling2(n,k).

A377452 E.g.f. satisfies A(x) = 1/(1 - A(x) * (exp(x) - 1))^2.

Original entry on oeis.org

1, 2, 16, 224, 4612, 126392, 4340836, 179534504, 8693925172, 482731239032, 30243460133956, 2110849596096584, 162438922745208532, 13665129603889106072, 1247684652874279407076, 122885960933254703151464, 12987106624622962667192692, 1466014441678589235669027512
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, (3*k+1)!/(2*k+2)!*stirling(n, k, 2));

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A367161.
a(n) = 2 * Sum_{k=0..n} (3*k+1)!/(2*k+2)! * Stirling2(n,k).

A377716 E.g.f. satisfies A(x) = (1 + (exp(x) - 1) * A(x))^2.

Original entry on oeis.org

1, 2, 12, 116, 1584, 28172, 619872, 16289996, 498428544, 17417438252, 684759380832, 29925135793676, 1439467532867904, 75591768584407532, 4303733247493423392, 264082643528395550156, 17375242687235713361664, 1220318925238762558532012, 91128522664443184593699552
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, (2*k+1)!/(k+2)!*stirling(n, k, 2));

Formula

E.g.f.: 4/(1 + sqrt(5 - 4*exp(x)))^2.
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A052895.
a(n) = 2 * Sum_{k=0..n} (2*k+1)!/(k+2)! * Stirling2(n,k).
a(n) ~ 2^(5/2) * sqrt(5) * n^(n-1) / (exp(n) * log(5/4)^(n - 1/2)). - Vaclav Kotesovec, Aug 27 2025
Showing 1-10 of 11 results. Next