A006531
Semiorders on n elements.
Original entry on oeis.org
1, 1, 3, 19, 183, 2371, 38703, 763099, 17648823, 468603091, 14050842303, 469643495179, 17315795469063, 698171064855811, 30561156525545103, 1443380517590979259, 73161586346500098903, 3961555049961803092531, 228225249142441259147103, 13938493569348563803135339
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.30.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J. L. Chandon, J. LeMaire and J. Pouget, Dénombrement des quasi-ordres sur un ensemble fini, Math. Sci. Humaines, No. 62 (1978), 61-80.
- J. L. Chandon, J. LeMaire and J. Pouget, Enumeration of semiorders on a finite set, Preprint (English) of "Dénombrement des quasi-ordres sur un ensemble fini".
- J. L. Chandon, Letter to N. J. A. Sloane, May 1981
- Julie Christophe, Jean-Paul Doignon and Samuel Fiorini, Counting Biorders, J. Integer Seqs., Vol. 6, 2003.
- Bérénice Delcroix-Oger and Clément Dupont, Lie-operads and operadic modules from poset cohomology, arXiv:2505.06094 [math.CO], 2025. See p. 28.
- Yan X. Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015.
-
A006531 := n->add(stirling2(n,k)*k!*A001006(k-1),k=1..n);
-
m[n_] := m[n] = m[n-1] + Sum[ m[k]*m[n-k-2], {k, 0, n-2}]; m[0] = a[0] = 1; a[n_] := Sum[ StirlingS2[n, k]*k!*m[k-1], {k, 1, n}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 24 2012, after Maple *)
-
{a(n)=polcoeff(sum(m=0, n, (2*m)!/(m+1)!*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */
A295238
Expansion of e.g.f. 2/(1 + sqrt(1 - 4*x*exp(x))).
Original entry on oeis.org
1, 1, 6, 57, 796, 14785, 344046, 9640225, 316255416, 11896233345, 504918768250, 23874754106401, 1244712973780068, 70940791877082049, 4388291507415513894, 292823509879910802465, 20966854494419642792176, 1603540841320336494905089, 130464295561360336835272050
Offset: 0
-
a:=series(2/(1+sqrt(1-4*x*exp(x))),x=0,19): seq(n!*coeff(a,x,n),n=0..18); # Paolo P. Lava, Mar 27 2019
-
nmax = 18; CoefficientList[Series[2/(1 + Sqrt[1 - 4 x Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 18; CoefficientList[Series[1/(1 + ContinuedFractionK[-x Exp[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n - k) Binomial[n, k] k! Sum[(m + 1)^(k - m - 1) Binomial[2 m, m]/(k - m)!, {m, 0, k}], {k, 0, n}], {n, 0, 18}]
-
a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*k, k)/((k+1)*(n-k)!)); \\ Seiichi Manyama, Aug 15 2023
A367161
E.g.f. satisfies A(x) = 1 + A(x)^3 * (exp(x) - 1).
Original entry on oeis.org
1, 1, 7, 91, 1795, 47851, 1612027, 65731891, 3148530595, 173319612571, 10782796483147, 748237171338691, 57299882326956595, 4800323120225595691, 436719009263680421467, 42878536726317406241491, 4519124182661042439577795, 508885588456024192452993211
Offset: 0
-
Table[Sum[(3*k)!/(2*k+1)! * StirlingS2[n,k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 10 2023 *)
-
a(n) = sum(k=0, n, (3*k)!/(2*k+1)!*stirling(n, k, 2));
A087138
Expansion of (1-sqrt(1-4*log(1+x)))/2.
Original entry on oeis.org
1, 1, 8, 64, 824, 12968, 252720, 5789712, 153169440, 4589004192, 153643615872, 5684390364288, 230307823878144, 10141452865049088, 482259966649655808, 24630247225278881280, 1344614199041549399040, 78137673004382654223360
Offset: 1
-
Rest[CoefficientList[Series[(1-Sqrt[1-4*Log[1+x]])/2, {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, May 03 2015 *)
-
x='x+O('x^50); Vec(serlaplace((1-sqrt(1-4*log(1+x)))/2)) \\ G. C. Greubel, May 24 2017
A377454
E.g.f. satisfies A(x) = 1/(1 - A(x) * (exp(x) - 1))^4.
Original entry on oeis.org
1, 4, 56, 1384, 50216, 2422024, 146279816, 10633540264, 904699882856, 88234503004744, 9707888368200776, 1189726637663987944, 160741241332049376296, 23738834426406792534664, 3804763374380021378204936, 657774175587674349626736424, 122016250347540672925706274536
Offset: 0
-
a(n) = 4*sum(k=0, n, (5*k+3)!/(4*k+4)!*stirling(n, k, 2));
A087152
Expansion of (1-sqrt(1-4*log(1+x)))/log(1+x)/2.
Original entry on oeis.org
1, 3, 20, 194, 2554, 42226, 843744, 19769256, 531768120, 16152296424, 546895099200, 20425461026736, 834215500905552, 36988602430554576, 1769524998544143360, 90851799797294235264, 4982968503277896871296
Offset: 1
-
Rest[CoefficientList[Series[(1-Sqrt[1-4*Log[1+x]])/Log[1+x]/2, {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, May 03 2015 *)
-
x='x+O('x^50); Vec(serlaplace((1-sqrt(1-4*log(1+x)))/log(1+x)/2 - 1)) \\ G. C. Greubel, May 24 2017
A295239
Expansion of e.g.f. 2/(1 + sqrt(1 + 4*x*exp(x))).
Original entry on oeis.org
1, -1, 2, -9, 68, -705, 9234, -146209, 2717000, -57986433, 1397949830, -37576332321, 1114326129564, -36141571087297, 1272713716466906, -48360394499269665, 1972269941821097744, -85929979225787811585, 3983422470176606823054, -195765982110500512129057
Offset: 0
-
a:=series(2/(1+sqrt(1+4*x*exp(x))),x=0,20): seq(n!*coeff(a,x,n),n=0..19); # Paolo P. Lava, Mar 27 2019
-
nmax = 19; CoefficientList[Series[2/(1 + Sqrt[1 + 4 x Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 19; CoefficientList[Series[1/(1 + ContinuedFractionK[x Exp[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n - k) Binomial[n, k] k! Sum[(-1)^m (m + 1)^(k - m - 1) Binomial[2 m, m]/(k - m)!, {m, 0, k}], {k, 0, n}], {n, 0, 19}]
-
a(n) = n!*sum(k=0, n, (-1)^k*k^(n-k)*binomial(2*k, k)/((k+1)*(n-k)!)); \\ Seiichi Manyama, Oct 30 2024
A377453
E.g.f. satisfies A(x) = 1/(1 - A(x) * (exp(x) - 1))^3.
Original entry on oeis.org
1, 3, 33, 639, 18177, 687663, 32585793, 1858893039, 124128928257, 9502575055983, 820716875385153, 78959656742857839, 8375163183606235137, 971063889443489669103, 122194096152956362997313, 16586054767142612489229039, 2415658529914018225123490817, 375779208568915395913102663023
Offset: 0
-
a(n) = 3*sum(k=0, n, (4*k+2)!/(3*k+3)!*stirling(n, k, 2));
A377452
E.g.f. satisfies A(x) = 1/(1 - A(x) * (exp(x) - 1))^2.
Original entry on oeis.org
1, 2, 16, 224, 4612, 126392, 4340836, 179534504, 8693925172, 482731239032, 30243460133956, 2110849596096584, 162438922745208532, 13665129603889106072, 1247684652874279407076, 122885960933254703151464, 12987106624622962667192692, 1466014441678589235669027512
Offset: 0
-
a(n) = 2*sum(k=0, n, (3*k+1)!/(2*k+2)!*stirling(n, k, 2));
A377716
E.g.f. satisfies A(x) = (1 + (exp(x) - 1) * A(x))^2.
Original entry on oeis.org
1, 2, 12, 116, 1584, 28172, 619872, 16289996, 498428544, 17417438252, 684759380832, 29925135793676, 1439467532867904, 75591768584407532, 4303733247493423392, 264082643528395550156, 17375242687235713361664, 1220318925238762558532012, 91128522664443184593699552
Offset: 0
-
a(n) = 2*sum(k=0, n, (2*k+1)!/(k+2)!*stirling(n, k, 2));
Showing 1-10 of 11 results.
Comments