cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A052803 Expansion of e.g.f. (-1 + sqrt(1 + 4*log(1-x)))/(2*log(1-x)).

Original entry on oeis.org

1, 1, 5, 44, 566, 9674, 207166, 5343456, 161405016, 5591409720, 218592034584, 9521490534720, 457329182411856, 24014921905589328, 1368772939062117936, 84161443919543331840, 5553011951023694408064, 391360838810043628416384, 29342876851060951124158848
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{C=Cycle(Z),S=Sequence(B),B=Prod(C,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[-1/(2*Log[1-x]) * (1-(1+4*Log[1-x])^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)

Formula

E.g.f.: (1/2)/log(-1/(-1+x))*(1-(1-4*log(-1/(-1+x)))^(1/2)).
a(n) ~ 2*sqrt(2) * n^(n-1) / (exp(3*n/4) * (exp(1/4)-1)^(n-1/2)). - Vaclav Kotesovec, Sep 30 2013
a(n) = Sum_{k=0..n} (2k)!/(k+1)! * |Stirling1(n,k)|. - Michael D. Weiner, Dec 23 2014
E.g.f.: 1/(1 + log(1-x)/(1 + log(1-x)/(1 + log(1-x)/(1 + log(1-x)/(1 + ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 19 2017

Extensions

New name using e.g.f., Vaclav Kotesovec, Sep 30 2013

A367155 E.g.f. satisfies A(x) = 1 + A(x)^3 * log(1 + x).

Original entry on oeis.org

1, 1, 5, 56, 948, 21804, 634284, 22348584, 925322784, 44039346264, 2369167375656, 142173632632272, 9416315321258928, 682290228636729504, 53689645309437175968, 4559660591348115191808, 415683140400707316145920, 40490500091575002629253120
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(3*k)!/(2*k+1)! * StirlingS1[n,k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 10 2023 *)
  • PARI
    a(n) = sum(k=0, n, (3*k)!/(2*k+1)!*stirling(n, k, 1));

Formula

a(n) = Sum_{k=0..n} (3*k)!/(2*k+1)! * Stirling1(n,k).
a(n) ~ 9 * n^(n-1) / (2^(5/2) * (exp(4/27) - 1)^(n - 1/2) * exp(n + 2/27)). - Vaclav Kotesovec, Nov 10 2023
Showing 1-2 of 2 results.