cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A295238 Expansion of e.g.f. 2/(1 + sqrt(1 - 4*x*exp(x))).

Original entry on oeis.org

1, 1, 6, 57, 796, 14785, 344046, 9640225, 316255416, 11896233345, 504918768250, 23874754106401, 1244712973780068, 70940791877082049, 4388291507415513894, 292823509879910802465, 20966854494419642792176, 1603540841320336494905089, 130464295561360336835272050
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 18 2017

Keywords

Comments

Inverse binomial transform of A194471.

Crossrefs

Programs

  • Maple
    a:=series(2/(1+sqrt(1-4*x*exp(x))),x=0,19): seq(n!*coeff(a,x,n),n=0..18); # Paolo P. Lava, Mar 27 2019
  • Mathematica
    nmax = 18; CoefficientList[Series[2/(1 + Sqrt[1 - 4 x Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 18; CoefficientList[Series[1/(1 + ContinuedFractionK[-x Exp[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[(-1)^(n - k) Binomial[n, k] k! Sum[(m + 1)^(k - m - 1) Binomial[2 m, m]/(k - m)!, {m, 0, k}], {k, 0, n}], {n, 0, 18}]
  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*k, k)/((k+1)*(n-k)!)); \\ Seiichi Manyama, Aug 15 2023

Formula

E.g.f.: 1/(1 - x*exp(x)/(1 - x*exp(x)/(1 - x*exp(x)/(1 - x*exp(x)/(1 - ...))))), a continued fraction.
a(n) ~ sqrt(2*(1 + LambertW(1/4))) * n^(n-1) / ((LambertW(1/4))^n * exp(n)). - Vaclav Kotesovec, Nov 18 2017
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(2*k+1,k)/( (2*k+1)*(n-k)! ) = n! * Sum_{k=0..n} k^(n-k) * A000108(k)/(n-k)!. - Seiichi Manyama, Aug 15 2023

A052895 E.g.f.: (1/2)/(exp(x) - 1) * (1 - (5 - 4*exp(x))^(1/2)).

Original entry on oeis.org

1, 1, 5, 43, 545, 9211, 195305, 4990483, 149371745, 5128125451, 198696086105, 8578228640323, 408387804764945, 21256203702751291, 1200890923560864905, 73191086773679576563, 4786857909878612350145, 334410103752029126714731
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{C=Set(Z,1 <= card),S=Sequence(B),B=Prod(C,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[(1/2)/(E^x-1)*(1-(5-4*E^x)^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
    a[n_] = Sum[k! StirlingS2[n, k] CatalanNumber[k], {k, 0, n}];
    Table[a[n], {n, 0, 17}] (* Peter Luschny, Jan 15 2018 *)

Formula

E.g.f.: (1/2)/(exp(x) - 1)*(1 - (5 - 4*exp(x))^(1/2)).
a(n) = Sum_{k=0..n} k!*Stirling2(n,k)*Catalan(k). - Vladimir Kruchinin, Sep 15 2010
a(n) ~ sqrt(10)*n^(n-1) / (exp(n)*(log(5/4))^(n-1/2)). - Vaclav Kotesovec, Sep 30 2013
E.g.f.: 1/(1 + (1 - exp(x))/(1 + (1 - exp(x))/(1 + (1 - exp(x))/(1 + (1 - exp(x))/(1 + ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 18 2017
From Peter Bala, Jan 15 2018: (Start)
E.g.f.: C(exp(x) - 1), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for A000108. Cf. A006531.
Conjecture: for fixed k = 1,2,..., the sequence a(n) (mod k) is eventually periodic with the exact period dividing phi(k), where phi(k) is the Euler totient function A000010. For example, modulo 10 the sequence becomes (1, 1, 5, 3, 5, 1, 5, 3, 5, ...), with an apparent period 1, 5, 3, 5 of length 4 = phi(10) beginning at a(1). (End)
O.g.f.: 1 + Sum_{k>=1} A000108(k)*Product_{r=1..k} r*x/(1 - r*x). - Petros Hadjicostas, Jun 12 2020

Extensions

New name using e.g.f. from Vaclav Kotesovec, Sep 30 2013

A048287 Number of semiorders on n labeled nodes whose incomparability graph is connected.

Original entry on oeis.org

1, 1, 7, 61, 751, 11821, 226927, 5142061, 134341711, 3975839341, 131463171247, 4803293266861, 192178106208271, 8356430510670061, 392386967808249967, 19788154572706556461, 1066668756919315412431, 61204224384073232815981
Offset: 1

Views

Author

Keywords

Examples

			a(3)=7, the seven semiorders being three disjoint points and the disjoint union of a point and a two-element chain (with six labelings).
		

Crossrefs

Programs

  • Maple
    A048287 := n -> add((-1)^(n-k-1)*Stirling2(n,k+1)*(2*k)!/k!, k=0..n-1):
    seq(A048287(n), n=1..18); # Peter Luschny, Jan 27 2016
  • Mathematica
    Table[Sum[(-1)^(n - k) StirlingS2[n, k] k!*CatalanNumber[k - 1], {k, n}], {n, 20}] (* Michael De Vlieger, Jan 27 2016 *)
    Rest[Range[0, 18]! CoefficientList[Series[1 - 2 (1 - Exp[-x]) /(1 - Sqrt[4 Exp[-x] - 3]), {x, 0, 18}], x]] (* Vincenzo Librandi, Jan 28 2016 *)
  • PARI
    {a(n)=local(A136590=matrix(n+1,n+1,r,c,if(r>=c,(r-1)!/(c-1)!*polcoeff(log(1+x+x^2 +x*O(x^n))^(c-1),r-1))));(-1)^(n+1)*(A136590^-1)[n+1,2]} \\ Paul D. Hanna, Jan 10 2008
    
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( (1 - sqrt(4*exp(-x + x*O(x^n)) - 3)) / 2, n))}; /* Michael Somos, Nov 26 2017 */
    
  • PARI
    {a(n) = if( n<1, 0, n! * polcoeff( serreverse( -log(1 - x + x^2 + x * O(x^n))), n))}; /* Michael Somos, Nov 26 2017 */

Formula

E.g.f.: 1-2*(1-exp(-x))/(1-sqrt(4*exp(-x)-3)).
E.g.f.: (1 - sqrt(4*exp(-x) - 3)) / 2. - Michael Somos, Nov 26 2017
a(n) = Sum_{k=1..n} (-1)^(n-k)*Stirling2(n, k)*k!*Catalan(k-1). - Vladeta Jovovic, Oct 18 2003
Equals column 1 (unsigned) of triangle A136595, which is the matrix inverse of the triangle A136590 of trinomial logarithmic coefficients. - Paul D. Hanna, Jan 10 2008
E.g.f A(x)=F(exp(x)-1), F(x)=x*A005043(x). - Vladimir Kruchinin, Sep 07 2010
a(n) = (-1)^(n-1) + Sum_{k=1..n-1} binomial(n,k)*a(k)*a(n-k). - Robert Israel, Mar 01 2016
Given e.g.f. =: A(x), then exp(-x) = A(x)^2 - A(x) + 1 = A'(x)*(1 - 2*A(x)). - Michael Somos, Nov 26 2017
a(n) ~ sqrt(3/8) * n^(n-1) / (log(4/3)^(n - 1/2) * exp(n)). - Vaclav Kotesovec, Dec 16 2020

Extensions

More terms from Vladeta Jovovic, Oct 18 2003

A052803 Expansion of e.g.f. (-1 + sqrt(1 + 4*log(1-x)))/(2*log(1-x)).

Original entry on oeis.org

1, 1, 5, 44, 566, 9674, 207166, 5343456, 161405016, 5591409720, 218592034584, 9521490534720, 457329182411856, 24014921905589328, 1368772939062117936, 84161443919543331840, 5553011951023694408064, 391360838810043628416384, 29342876851060951124158848
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{C=Cycle(Z),S=Sequence(B),B=Prod(C,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[-1/(2*Log[1-x]) * (1-(1+4*Log[1-x])^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)

Formula

E.g.f.: (1/2)/log(-1/(-1+x))*(1-(1-4*log(-1/(-1+x)))^(1/2)).
a(n) ~ 2*sqrt(2) * n^(n-1) / (exp(3*n/4) * (exp(1/4)-1)^(n-1/2)). - Vaclav Kotesovec, Sep 30 2013
a(n) = Sum_{k=0..n} (2k)!/(k+1)! * |Stirling1(n,k)|. - Michael D. Weiner, Dec 23 2014
E.g.f.: 1/(1 + log(1-x)/(1 + log(1-x)/(1 + log(1-x)/(1 + log(1-x)/(1 + ...))))), a continued fraction. - Ilya Gutkovskiy, Nov 19 2017

Extensions

New name using e.g.f., Vaclav Kotesovec, Sep 30 2013

A383987 Series expansion of the exponential generating function -tridend(-(1-exp(x))) where tridend(x) = (1 - 3*x - sqrt(1+6*x+x^2)) / (4*x) (A001003).

Original entry on oeis.org

0, 1, -5, 49, -725, 14401, -360005, 10863889, -384415925, 15612336481, -715930020005, 36592369889329, -2062911091119125, 127170577711282561, -8510569547826528005, 614491222512504748369, -47615614242877583230325, 3941408640018910366196641
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Crossrefs

Composition of A001003 with exp(x)-1.

Programs

  • Mathematica
    nn = 17; f[x_] := (1 + 3*x - Sqrt[1 + 6*x + x^2])/(4*x); Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]

A383989 Series expansion of the exponential generating function ff6^!(exp(x)-1) where ff6^!(x) = x * (1-3*x-x^2+x^3) / (1+3*x+x^2-x^3).

Original entry on oeis.org

0, 1, -11, 61, -467, 4381, -49091, 643021, -9615827, 161844541, -3026079971, 62243374381, -1396619164787, 33949401567901, -888725861445251, 24926889744928141, -745755560487363347, 23705772035082494461, -797875590555470224931, 28346366547928396344301
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 19; f[x_] := x*(1 - 3*x - x^2 + x^3)/(1 + 3*x + x^2 - x^3);
    Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]

A383985 Series expansion of the exponential generating function LambertW(1-exp(x)), see A000169.

Original entry on oeis.org

0, 1, -1, 4, -23, 181, -1812, 22037, -315569, 5201602, -97009833, 2019669961, -46432870222, 1168383075471, -31939474693297, 942565598033196, -29866348653695203, 1011335905644178273, -36446897413531401020, 1392821757824071815641, -56259101478392975833333
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Crossrefs

Composition of A000169 with signs and 1-exp(x).

Programs

  • Mathematica
    nn = 20; f[x_] := -Sum[k^(k - 1)*(1 - Exp[x])^k/k!, {k, nn}];
    Range[0, nn]! * CoefficientList[Series[f[x], {x, 0, nn}], x]

A383986 Expansion of the exponential generating function sqrt(4*exp(x) - exp(2*x) - 2) - 1.

Original entry on oeis.org

0, 1, -1, 1, -13, 61, -601, 5881, -73333, 1021861, -16334401, 290146561, -5707536253, 122821558861, -2873553719401, 72586328036041, -1969306486088773, 57106504958139061, -1762735601974347601, 57705363524117482321, -1996916624448159410893
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 20; f[x_] := -1 + Sqrt[1 + 2 x - x^2];
    Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]

A383988 Series expansion of the exponential generating function -postLie(1-exp(x)) where postLie(x) = -log((1 + sqrt(1-4*x)) / 2) (given by A006963).

Original entry on oeis.org

0, 1, -2, 12, -110, 1380, -22022, 426972, -9747950, 256176660, -7617417302, 252851339532, -9268406209790, 371843710214340, -16206868062692582, 762569209601624892, -38525315595630383630, 2079964082064837282420, -119513562475103977951862
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series -postLie(-x) is the inverse for the substitution of the series comTrias(x), given by the suspension of the Koszul dual of comTrias. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Cf. A002050, A006531, A084099, A097388, A101851, A114285, A225883, A383985, A383986, A383987, A383989. Composition of -A006963(-x) and exp(x)-1.

Programs

  • Mathematica
    nn = 18; f[x_] := Log[(1 + Sqrt[1 + 4*x])/2];
    Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]

A383990 Series expansion of the exponential generating function exp(-dend(-x))-1 where dend(x) = (1 - sqrt(1+4*x)) / (2*x) + 1 (given by A000108).

Original entry on oeis.org

0, 1, -3, 19, -191, 2661, -47579, 1040047, -26888511, 802727209, -27178685459, 1029077910411, -43086906080063, 1976633329627789, -98597207392040811, 5313105048925173991, -307587436319162110079, 19038773384213189214417, -1254686724727364725716131
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series -dend(-x) is the inverse for the substitution of the series dias(x), given by the suspension of the Koszul dual of dias. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Cf. A003725, A006531, A097388, A111884, A112242, A177885, A318215, A383991, A383992, A383993, A383994, A383995. Composition of exp(x)-1 with -A000108(-x).
Showing 1-10 of 17 results. Next