A295238
Expansion of e.g.f. 2/(1 + sqrt(1 - 4*x*exp(x))).
Original entry on oeis.org
1, 1, 6, 57, 796, 14785, 344046, 9640225, 316255416, 11896233345, 504918768250, 23874754106401, 1244712973780068, 70940791877082049, 4388291507415513894, 292823509879910802465, 20966854494419642792176, 1603540841320336494905089, 130464295561360336835272050
Offset: 0
-
a:=series(2/(1+sqrt(1-4*x*exp(x))),x=0,19): seq(n!*coeff(a,x,n),n=0..18); # Paolo P. Lava, Mar 27 2019
-
nmax = 18; CoefficientList[Series[2/(1 + Sqrt[1 - 4 x Exp[x]]), {x, 0, nmax}], x] Range[0, nmax]!
nmax = 18; CoefficientList[Series[1/(1 + ContinuedFractionK[-x Exp[x], 1, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n - k) Binomial[n, k] k! Sum[(m + 1)^(k - m - 1) Binomial[2 m, m]/(k - m)!, {m, 0, k}], {k, 0, n}], {n, 0, 18}]
-
a(n) = n!*sum(k=0, n, k^(n-k)*binomial(2*k, k)/((k+1)*(n-k)!)); \\ Seiichi Manyama, Aug 15 2023
A052895
E.g.f.: (1/2)/(exp(x) - 1) * (1 - (5 - 4*exp(x))^(1/2)).
Original entry on oeis.org
1, 1, 5, 43, 545, 9211, 195305, 4990483, 149371745, 5128125451, 198696086105, 8578228640323, 408387804764945, 21256203702751291, 1200890923560864905, 73191086773679576563, 4786857909878612350145, 334410103752029126714731
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{C=Set(Z,1 <= card),S=Sequence(B),B=Prod(C,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[(1/2)/(E^x-1)*(1-(5-4*E^x)^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
a[n_] = Sum[k! StirlingS2[n, k] CatalanNumber[k], {k, 0, n}];
Table[a[n], {n, 0, 17}] (* Peter Luschny, Jan 15 2018 *)
A048287
Number of semiorders on n labeled nodes whose incomparability graph is connected.
Original entry on oeis.org
1, 1, 7, 61, 751, 11821, 226927, 5142061, 134341711, 3975839341, 131463171247, 4803293266861, 192178106208271, 8356430510670061, 392386967808249967, 19788154572706556461, 1066668756919315412431, 61204224384073232815981
Offset: 1
a(3)=7, the seven semiorders being three disjoint points and the disjoint union of a point and a two-element chain (with six labelings).
-
A048287 := n -> add((-1)^(n-k-1)*Stirling2(n,k+1)*(2*k)!/k!, k=0..n-1):
seq(A048287(n), n=1..18); # Peter Luschny, Jan 27 2016
-
Table[Sum[(-1)^(n - k) StirlingS2[n, k] k!*CatalanNumber[k - 1], {k, n}], {n, 20}] (* Michael De Vlieger, Jan 27 2016 *)
Rest[Range[0, 18]! CoefficientList[Series[1 - 2 (1 - Exp[-x]) /(1 - Sqrt[4 Exp[-x] - 3]), {x, 0, 18}], x]] (* Vincenzo Librandi, Jan 28 2016 *)
-
{a(n)=local(A136590=matrix(n+1,n+1,r,c,if(r>=c,(r-1)!/(c-1)!*polcoeff(log(1+x+x^2 +x*O(x^n))^(c-1),r-1))));(-1)^(n+1)*(A136590^-1)[n+1,2]} \\ Paul D. Hanna, Jan 10 2008
-
{a(n) = if( n<0, 0, n! * polcoeff( (1 - sqrt(4*exp(-x + x*O(x^n)) - 3)) / 2, n))}; /* Michael Somos, Nov 26 2017 */
-
{a(n) = if( n<1, 0, n! * polcoeff( serreverse( -log(1 - x + x^2 + x * O(x^n))), n))}; /* Michael Somos, Nov 26 2017 */
A052803
Expansion of e.g.f. (-1 + sqrt(1 + 4*log(1-x)))/(2*log(1-x)).
Original entry on oeis.org
1, 1, 5, 44, 566, 9674, 207166, 5343456, 161405016, 5591409720, 218592034584, 9521490534720, 457329182411856, 24014921905589328, 1368772939062117936, 84161443919543331840, 5553011951023694408064, 391360838810043628416384, 29342876851060951124158848
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{C=Cycle(Z),S=Sequence(B),B=Prod(C,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
CoefficientList[Series[-1/(2*Log[1-x]) * (1-(1+4*Log[1-x])^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
A383987
Series expansion of the exponential generating function -tridend(-(1-exp(x))) where tridend(x) = (1 - 3*x - sqrt(1+6*x+x^2)) / (4*x) (A001003).
Original entry on oeis.org
0, 1, -5, 49, -725, 14401, -360005, 10863889, -384415925, 15612336481, -715930020005, 36592369889329, -2062911091119125, 127170577711282561, -8510569547826528005, 614491222512504748369, -47615614242877583230325, 3941408640018910366196641
Offset: 0
Cf.
A002050,
A006531,
A084099,
A101851,
A114285,
A225883,
A383985,
A383986,
A383988,
A383989,
A383991.
Composition of
A001003 with exp(x)-1.
-
nn = 17; f[x_] := (1 + 3*x - Sqrt[1 + 6*x + x^2])/(4*x); Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]
A383989
Series expansion of the exponential generating function ff6^!(exp(x)-1) where ff6^!(x) = x * (1-3*x-x^2+x^3) / (1+3*x+x^2-x^3).
Original entry on oeis.org
0, 1, -11, 61, -467, 4381, -49091, 643021, -9615827, 161844541, -3026079971, 62243374381, -1396619164787, 33949401567901, -888725861445251, 24926889744928141, -745755560487363347, 23705772035082494461, -797875590555470224931, 28346366547928396344301
Offset: 0
Cf.
A002050,
A006531,
A084099,
A101851,
A114285,
A225883,
A383985,
A383986,
A383987,
A383988,
A383995.
-
nn = 19; f[x_] := x*(1 - 3*x - x^2 + x^3)/(1 + 3*x + x^2 - x^3);
Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]
A383985
Series expansion of the exponential generating function LambertW(1-exp(x)), see A000169.
Original entry on oeis.org
0, 1, -1, 4, -23, 181, -1812, 22037, -315569, 5201602, -97009833, 2019669961, -46432870222, 1168383075471, -31939474693297, 942565598033196, -29866348653695203, 1011335905644178273, -36446897413531401020, 1392821757824071815641, -56259101478392975833333
Offset: 0
Cf.
A002050,
A006531,
A084099,
A101851,
A114285,
A177885,
A225883,
A383986,
A383987,
A383988,
A383989.
Composition of
A000169 with signs and 1-exp(x).
-
nn = 20; f[x_] := -Sum[k^(k - 1)*(1 - Exp[x])^k/k!, {k, nn}];
Range[0, nn]! * CoefficientList[Series[f[x], {x, 0, nn}], x]
A383986
Expansion of the exponential generating function sqrt(4*exp(x) - exp(2*x) - 2) - 1.
Original entry on oeis.org
0, 1, -1, 1, -13, 61, -601, 5881, -73333, 1021861, -16334401, 290146561, -5707536253, 122821558861, -2873553719401, 72586328036041, -1969306486088773, 57106504958139061, -1762735601974347601, 57705363524117482321, -1996916624448159410893
Offset: 0
Cf.
A002050,
A006531,
A084099,
A101851,
A114285,
A182037,
A225883,
A383985,
A383987,
A383988,
A383989.
-
nn = 20; f[x_] := -1 + Sqrt[1 + 2 x - x^2];
Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]
A383988
Series expansion of the exponential generating function -postLie(1-exp(x)) where postLie(x) = -log((1 + sqrt(1-4*x)) / 2) (given by A006963).
Original entry on oeis.org
0, 1, -2, 12, -110, 1380, -22022, 426972, -9747950, 256176660, -7617417302, 252851339532, -9268406209790, 371843710214340, -16206868062692582, 762569209601624892, -38525315595630383630, 2079964082064837282420, -119513562475103977951862
Offset: 0
Cf.
A002050,
A006531,
A084099,
A097388,
A101851,
A114285,
A225883,
A383985,
A383986,
A383987,
A383989. Composition of -
A006963(-x) and exp(x)-1.
-
nn = 18; f[x_] := Log[(1 + Sqrt[1 + 4*x])/2];
Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]
A383990
Series expansion of the exponential generating function exp(-dend(-x))-1 where dend(x) = (1 - sqrt(1+4*x)) / (2*x) + 1 (given by A000108).
Original entry on oeis.org
0, 1, -3, 19, -191, 2661, -47579, 1040047, -26888511, 802727209, -27178685459, 1029077910411, -43086906080063, 1976633329627789, -98597207392040811, 5313105048925173991, -307587436319162110079, 19038773384213189214417, -1254686724727364725716131
Offset: 0
Cf.
A003725,
A006531,
A097388,
A111884,
A112242,
A177885,
A318215,
A383991,
A383992,
A383993,
A383994,
A383995. Composition of exp(x)-1 with -
A000108(-x).
Showing 1-10 of 17 results.
Comments