cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A001498 Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 15, 15, 1, 10, 45, 105, 105, 1, 15, 105, 420, 945, 945, 1, 21, 210, 1260, 4725, 10395, 10395, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 1, 45, 990, 13860, 135135, 945945, 4729725, 16216200, 34459425, 34459425
Offset: 0

Views

Author

Keywords

Comments

The row polynomials with exponents in increasing order (e.g., third row: 1+3x+3x^2) are Grosswald's y_{n}(x) polynomials, p. 18, Eq. (7).
Also called Bessel numbers of first kind.
The triangle a(n,k) has factorization [C(n,k)][C(k,n-k)]Diag((2n-1)!!) The triangle a(n-k,k) is A100861, which gives coefficients of scaled Hermite polynomials. - Paul Barry, May 21 2005
Related to k-matchings of the complete graph K_n by a(n,k)=A100861(n+k,k). Related to the Morgan-Voyce polynomials by a(n,k)=(2k-1)!!*A085478(n,k). - Paul Barry, Aug 17 2005
Related to Hermite polynomials by a(n,k)=(-1)^k*A060821(n+k, n-k)/2^n. - Paul Barry, Aug 28 2005
The row polynomials, the Bessel polynomials y(n,x):=Sum_{m=0..n} (a(n,m)*x^m) (called y_{n}(x) in the Grosswald reference) satisfy (x^2)*(d^2/dx^2)y(n,x) + 2*(x+1)*(d/dx)y(n,x) - n*(n+1)*y(n,x) = 0.
a(n-1, m-1), n >= m >= 1, enumerates unordered n-vertex forests composed of m plane (aka ordered) increasing (rooted) trees. Proof from the e.g.f. of the first column Y(z):=1-sqrt(1-2*z) (offset 1) and the Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0)=0, with out-degree o.g.f. phi(w)=1/(1-w). See their remark on p. 28 on plane recursive trees. For m=1 see the D. Callan comment on A001147 from Oct 26 2006. - Wolfdieter Lang, Sep 14 2007
The asymptotic expansions of the higher order exponential integrals E(x,m,n), see A163931 for information, lead to the Bessel numbers of the first kind in an intriguing way. For the first four values of m these asymptotic expansions lead to the triangles A130534 (m=1), A028421 (m=2), A163932 (m=3) and A163934 (m=4). The o.g.f.s. of the right hand columns of these triangles in their turn lead to the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4). The row sums of these four triangles lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four right hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next four right hand columns of A001498. So one by one all columns of the triangle of coefficients of Bessel polynomials appear. - Johannes W. Meijer, Oct 07 2009
a(n,k) also appear as coefficients of (n+1)st degree of the differential operator D:=1/t d/dt, namely D^{n+1}= Sum_{k=0..n} a(n,k) (-1)^{n-k} t^{1-(n+k)} (d^{n+1-k}/dt^{n+1-k}. - Leonid Bedratyuk, Aug 06 2010
a(n-1,k) are the coefficients when expanding (xI)^n in terms of powers of I. Let I(f)(x) := Integral_{a..x} f(t) dt, and (xI)^n := x Integral_{a..x} [ x_{n-1} Integral_{a..x_{n-1}} [ x_{n-2} Integral_{a..x_{n-2}} ... [ x_1 Integral_{a..x_1} f(t) dt ] dx_1 ] .. dx_{n-2} ] dx_{n-1}. Then: (xI)^n = Sum_{k=0..n-1} (-1)^k * a(n-1,k) * x^(n-k) * I^(n+k)(f)(x) where I^(n) denotes iterated integration. - Abdelhay Benmoussa, Apr 11 2025

Examples

			The triangle a(n, k), n >= 0, k = 0..n, begins:
  1
  1  1
  1  3   3
  1  6  15    15
  1 10  45   105    105
  1 15 105   420    945    945
  1 21 210  1260   4725  10395   10395
  1 28 378  3150  17325  62370  135135   135135
  1 36 630  6930  51975 270270  945945  2027025  2027025
  1 45 990 13860 135135 945945 4729725 16216200 34459425 34459425
  ...
And the first few Bessel polynomials are:
  y_0(x) = 1,
  y_1(x) = x + 1,
  y_2(x) = 3*x^2 + 3*x + 1,
  y_3(x) = 15*x^3 + 15*x^2 + 6*x + 1,
  y_4(x) = 105*x^4 + 105*x^3 + 45*x^2 + 10*x + 1,
  y_5(x) = 945*x^5 + 945*x^4 + 420*x^3 + 105*x^2 + 15*x + 1,
  ...
Tree counting: a(2,1)=3 for the unordered forest of m=2 plane increasing trees with n=3 vertices, namely one tree with one vertex (root) and another tree with two vertices (a root and a leaf), labeled increasingly as (1, 23), (2,13) and (3,12). - _Wolfdieter Lang_, Sep 14 2007
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Cf. A001497 (same triangle but rows read in reverse order). Other versions of this same triangle are given in A144331, A144299, A111924 and A100861.
Columns from left edge include A000217, A050534.
Columns 1-6 from right edge are A001147, A001879, A000457, A001880, A001881, A038121.
Bessel polynomials evaluated at certain x are A001515 (x=1, row sums), A000806 (x=-1), A001517 (x=2), A002119 (x=-2), A001518 (x=3), A065923 (x=-3), A065919 (x=4). Cf. A043301, A003215.
Cf. A245066 (central terms). A113025 (y_n(2*x)).

Programs

  • Haskell
    a001498 n k = a001498_tabl !! n !! k
    a001498_row n = a001498_tabl !! n
    a001498_tabl = map reverse a001497_tabl
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    /* As triangle: */ [[Factorial(n+k)/(2^k*Factorial(n-k)*Factorial(k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
  • Maple
    Bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end; # explicit Bessel polynomials
    Bessel := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*Bessel(n-1)+Bessel(n-2); fi; end; # recurrence for Bessel polynomials
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
    f := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*f(n-1)+f(n-2); fi; end;
    # Alternative:
    T := (n,k) -> pochhammer(n+1,k)*binomial(n,k)/2^k:
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 11 2018
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
    else (n - k + 1)* T(n, k - 1) + T(n - 1, k) fi fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Oct 02 2023
  • Mathematica
    max=50; Flatten[Table[(n+k)!/(2^k*(n-k)!*k!), {n, 0, Sqrt[2 max]//Ceiling}, {k, 0, n}]][[1 ;; max]] (* Jean-François Alcover, Mar 20 2011 *)
  • PARI
    {T(n,k)=if(k<0||k>n, 0, binomial(n, k)*(n+k)!/2^k/n!)} /* Michael Somos, Oct 03 2006 */
    
  • PARI
    A001497_ser(N,t='t) = {
      my(x='x+O('x^(N+2)));
      serlaplace(deriv(exp((1-sqrt(1-2*t*x))/t),'x));
    };
    concat(apply(Vecrev, Vec(A001497_ser(9)))) \\ Gheorghe Coserea, Dec 27 2017
    

Formula

a(n, k) = (n+k)!/(2^k*(n-k)!*k!) (see Grosswald and Riordan). - Ralf Stephan, Apr 20 2004
a(n, 0)=1; a(0, k)=0, k > 0; a(n, k) = a(n-1, k) + (n-k+1) * a(n, k-1) = a(n-1, k) + (n+k-1) * a(n-1, k-1). - Len Smiley
a(n, m) = A001497(n, n-m) = A001147(m)*binomial(n+m, 2*m) for n >= m >= 0, otherwise 0.
G.f. for m-th column: (A001147(m)*x^m)/(1-x)^(2*m+1), m >= 0, where A001147(m) = double factorials (from explicit a(n, m) form).
Row polynomials y_n(x) are given by D^(n+1)(exp(t)) evaluated at t = 0, where D is the operator 1/(1-t*x)*d/dt. - Peter Bala, Nov 25 2011
G.f.: conjecture: T(0)/(1-x), where T(k) = 1 - x*y*(k+1)/(x*y*(k+1) - (1-x)^2/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
Recurrence from Grosswald, p. 18, eq. (5), for the row polynomials: y_n(x) = (2*n-1)*x*y_{n-1} + y_{n-2}(x), y_{-1}(x) = 1 = y_{0} = 1, n >= 1. This becomes, for n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = (2*n-1)*a(n-1, k-1) + a(n-2, k). Compare with the above given recurrences. - Wolfdieter Lang, May 11 2018
T(n, k) = Pochhammer(n+1,k)*binomial(n,k)/2^k = A113025(n,k)/2^k. - Peter Luschny, May 11 2018
a(n, k) = Sum_{i=0..min(n-1, k)} (n-i)(k-i) * a(n-1, i) where x(n) = x*(x-1)*...*(x-n+1) is the falling factorial, this equality follows directly from the operational formula we wrote in Apr 11 2025.- Abdelhay Benmoussa, May 18 2025

A156289 Triangle read by rows: T(n,k) is the number of end rhyme patterns of a poem of an even number of lines (2n) with 1<=k<=n evenly rhymed sounds.

Original entry on oeis.org

1, 1, 3, 1, 15, 15, 1, 63, 210, 105, 1, 255, 2205, 3150, 945, 1, 1023, 21120, 65835, 51975, 10395, 1, 4095, 195195, 1201200, 1891890, 945945, 135135, 1, 16383, 1777230, 20585565, 58108050, 54864810, 18918900, 2027025, 1, 65535, 16076985
Offset: 1

Views

Author

Hartmut F. W. Hoft, Feb 07 2009

Keywords

Comments

T(n,k) is the number of partitions of a set of size 2*n into k blocks of even size [Comtet]. For partitions into odd sized blocks see A136630.
See A241171 for the triangle of ordered set partitions of the set {1,2,...,2*n} into k even sized blocks. - Peter Bala, Aug 20 2014
This triangle T(n,k) gives the sum over the M_3 multinomials A036040 for the partitions of 2*n with k even parts, for 1 <= k <= n. See the triangle A257490 with sums over the entries with k parts, and the Hartmut F. W. Hoft program. - Wolfdieter Lang, May 13 2015

Examples

			The triangle begins
  n\k|..1.....2......3......4......5......6
  =========================================
  .1.|..1
  .2.|..1.....3
  .3.|..1....15.....15
  .4.|..1....63....210....105
  .5.|..1...255...2205...3150....945
  .6.|..1..1023..21120..65835..51975..10395
  ..
T(3,3) = 15. The 15 partitions of the set [6] into three even blocks are:
  (12)(34)(56), (12)(35)(46), (12)(36)(45),
  (13)(24)(56), (13)(25)(46), (13)(26)(45),
  (14)(23)(56), (14)(25)(36), (14)(26)(35),
  (15)(23)(46), (15)(24)(36), (15)(26)(34),
  (16)(23)(45), (16)(24)(35), (16)(25)(34).
Examples of recurrence relation
 T(4,3) = 5*T(3,2) + 9*T(3,3) = 5*15 + 9*15 = 210;
 T(6,5) = 9*T(5,4) + 25*T(5,5) = 9*3150 + 25*945 = 51975.
 T(4,2) = 28 + 35 = 63 (M_3 multinomials A036040 for partitions of 8 with 3 even parts, namely (2,6) and (4^2)). - _Wolfdieter Lang_, May 13 2015
		

References

  • L. Comtet, Analyse Combinatoire, Presses Univ. de France, 1970, Vol. II, pages 61-62.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pages 225-226.

Crossrefs

Diagonal T(n, n) is A001147, subdiagonal T(n+1, n) is A001880.
2nd column variant T(n, 2)/3, for 2<=n, is A002450.
3rd column variant T(n, 3)/15, for 3<=n, is A002451.
Sum of the n-th row is A005046.

Programs

  • Maple
    T := proc(n,k) option remember; `if`(k = 0 and n = 0, 1, `if`(n < 0, 0,
    (2*k-1)*T(n-1, k-1) + k^2*T(n-1, k))) end:
    for n from 1 to 8 do seq(T(n,k), k=1..n) od; # Peter Luschny, Sep 04 2017
  • Mathematica
    T[n_,k_] := Which[n < k, 0, n == 1, 1, True, 2/Factorial2[2 k] Sum[(-1)^(k + j) Binomial[2 k, k + j] j^(2 n), {j, 1, k}]]
    (* alternate computation with function triangle[] defined in A257490 *)
    a[n_]:=Map[Apply[Plus,#]&,triangle[n],{2}]
    (* Hartmut F. W. Hoft, Apr 26 2015 *)

Formula

Recursion: T(n,1)=1 for 1<=n; T(n,k)=0 for 1<=n
Generating function for the k-th column of the triangle T(i+k,k):
G(k,x) = Sum_{i>=0} T(i+k,k)*x^i = Product_{j=1..k} (2*j-1)/(1-j^2*x).
Closed form expression: T(n,k) = (2/(k!*2^k))*Sum_{j=1..k} (-1)^(k-j)*binomial(2*k,k-j)*j^(2*n).
From Peter Bala, Feb 21 2011: (Start)
GENERATING FUNCTION
E.g.f. (including a constant 1):
(1)... F(x,z) = exp(x*(cosh(z)-1))
= Sum_{n>=0} R(n,x)*z^(2*n)/(2*n)!
= 1 + x*z^2/2! + (x + 3*x^2)*z^4/4! + (x + 15*x^2 + 15*x^3)*z^6/6! + ....
ROW POLYNOMIALS
The row polynomials R(n,x) begin
... R(1,x) = x
... R(2,x) = x + 3*x^2
... R(3,x) = x + 15*x^2 + 15*x^3.
The egf F(x,z) satisfies the partial differential equation
(2)... d^2/dz^2(F) = x*F + x*(2*x+1)*F' + x^2*F'',
where ' denotes differentiation with respect to x. Hence the row polynomials satisfy the recurrence relation
(3)... R(n+1,x) = x*{R(n,x) + (2*x+1)*R'(n,x) + x*R''(n,x)}
with R(0,x) = 1. The recurrence relation for T(n,k) given above follows from this.
(4)... T(n,k) = (2*k-1)!!*A036969(n,k).
(End)

A094665 Another version of triangular array in A083061: triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 3, 6, 10, 15, 21, 28, ...] DELTA [1, 2, 3, 4, 5, 6, 7, 8, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 4, 15, 15, 0, 34, 147, 210, 105, 0, 496, 2370, 4095, 3150, 945, 0, 11056, 56958, 111705, 107415, 51975, 10395, 0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 0, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490, 18918900, 2027025
Offset: 0

Author

Philippe Deléham, Jun 07 2004, Jun 12 2007

Keywords

Comments

Define polynomials P(n,x) = x(2x+1)P(n-1,x+1) - 2x^2P(n-1,x), P(0,x) = 1. Sequence gives triangle read by rows, defined by P(n,x) = Sum_{k = 0..n} T(n,k)*x^k. - Philippe Deléham, Jun 20 2004
From Johannes W. Meijer, May 24 2009: (Start)
In A160464 we defined the coefficients of the ES1 matrix by ES1[2*m-1,n=1] = 2*eta(2*m-1) and the recurrence relation ES1[2*m-1,n] = ((2*n-2)/(2*n-1))*(ES1[2*m-1,n-1] - ES1[2*m-3,n-1]/(n-1)^2) for m the positive and negative integers and n >= 1. As usual eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function. It is well-known that ES1[1-2*m,n=1] = (4^m-1)*(-bernoulli(2*m))/m for m >= 1. and together with the recurrence relation this leads to ES1[-1,n] = 0.5 for n >= 1.
We discovered that the n-th term of the row coefficients ES1[1-2*m,n] for m >= 1, can be generated with the rather simple polynomials RES1(1-2*m,n) = (-1)^(m+1)*ECGP(1-2*m, n)/2^m. This discovery was enabled by the recurrence relation for the RES1(1-2*m,n) which we derived from the recurrence relation for the ES1[2*m-1,n] coefficients and the fact that RES1(-1,n) = 0.5. The coefficients of the ECGP(1-2*m,n) polynomials led to this triangle and subsequently to triangle A083061. (End)
From David Callan, Jan 03 2011: (Start)
T(n,k) is the number of increasing 0-2 trees (A002105) on 2n edges in which the minimal path from the root has length k.
Proof. The number a(n,k) of such trees satisfies the recurrence a(0,0)=1, a(1,1)=1 and, counting by size of the subtree rooted at the smaller child of the root,
a(n,k) = Sum_{j=1..n-1} C(2n-1,j)*a(j,k-1)*a(n-1-j)
for 2<=k<=n, where a(n) = Sum_{k>=0} a(n,k) is the reduced tangent number A002105 (indexed from 0). The recurrence translates into the differential equation
F_x(x,y) = y*F(x,y)*G(x)
for the GF F(x,y) = Sum_{n,k>=0} a(n,k)x^(2n)/(2n)!*y^k, where G(x):=Sum_{n>=0} a(n)x^(2n+1)/(2n+1)! is known to be sqrt(2)*tan(x/sqrt(2)). The differential equation has solution F(x,y) = sec(x/sqrt(2))^(2y). (End)

Examples

			Triangle begins:
.1;
.0, 1;
.0, 1, 3;
.0, 4, 15, 15;
.0, 34, 147, 210, 105;
.0, 496, 2370, 4095, 3150, 945;
.0, 11056, 56958, 111705, 107415, 51975, 10395;
.0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135;
From _Johannes W. Meijer_, May 24 2009: (Start)
The first few ECGP(1-2*m,n) polynomials are: ECGP(-1,n) = 1; ECGP(-3,n) = n; ECGP(-5,n) = n + 3*n^2; ECGP(-7,n) = 4*n + 15*n^2+ 15*n^3 .
The first few RES1(1-2*m,n) are: RES1(-1,n) = (1/2)*(1); RES1(-3,n) = (-1/4)*(n); RES1(-5,n) = (1/8)*(n+3*n^2); RES1(-7,n) = (-1/16)*(4*n+15*n^2+15*n^3).
(End)
		

Crossrefs

From Johannes W. Meijer, May 24 2009 and Jun 27 2009: (Start)
A001147, A001880, A160470, A160471 and A160472 are the first five right hand columns.
Appears in A162005, A162006 and A162007.
(End)

Programs

  • Maple
    nmax:=7; imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2 * x^2 * T1(i-1, x)): dx:=degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1=0..dx) od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do T(n+1, k+1) := A083061(n, k) od: od: T(0, 0):=1: for n from 1 to nmax do T(n, 0):=0 od: seq(seq(T(n, k), k=0..n), n=0..nmax);
    # Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012
  • Mathematica
    nmax = 8;
    T[n_, k_] := SeriesCoefficient[Sec[x/Sqrt[2]]^(2y), {x, 0, 2n}, {y, 0, k}]* (2n)!;
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)

Formula

Sum_{k = 0..n} T(n, k) = A002105(n+1).
Sum_{k = 0..n} T(n, k)*2^(n-k) = A000364(n); Euler numbers.
Sum_{k = 0..n} T(n, k)*(-2)^(n-k) = 1.
RES1(1-2*m,n) = n^2*RES1(3-2*m,n)-n*(2*n+1)*RES1(3-2*m,n+1)/2 for m >= 2, with RES1(-1,n) = 0.5 for n >= 1. - Johannes W. Meijer, May 24 2009
G.f.: Sum_{n,k>=0} T(n,k)x^n/n!*y^k = sec(x/sqrt(2))^(2y).

Extensions

Term corrected by Johannes W. Meijer, Sep 23 2012

A163936 Triangle related to the o.g.f.s. of the right-hand columns of A130534 (E(x,m=1,n)).

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 6, 8, 1, 0, 24, 58, 22, 1, 0, 120, 444, 328, 52, 1, 0, 720, 3708, 4400, 1452, 114, 1, 0, 5040, 33984, 58140, 32120, 5610, 240, 1, 0, 40320, 341136, 785304, 644020, 195800, 19950, 494, 1, 0, 362880, 3733920, 11026296, 12440064, 5765500, 1062500
Offset: 1

Author

Johannes W. Meijer, Aug 13 2009

Keywords

Comments

The asymptotic expansions of the higher-order exponential integral E(x,m=1,n) lead to triangle A130524, see A163931 for information on E(x,m,n). The o.g.f.s. of the right-hand columns of triangle A130534 have a nice structure: gf(p) = W1(z,p)/(1-z)^(2*p-1) with p = 1 for the first right-hand column, p = 2 for the second right-hand column, etc. The coefficients of the W1(z,p) polynomials lead to the triangle given above, n >= 1 and 1 <= m <= n. Our triangle is the same as A112007 with an extra right-hand column, see also the second Eulerian triangle A008517. The row sums of our triangle lead to A001147.
We observe that the row sums of the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4) for z=1 lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four left-hand columns of the triangle of the Bessel coefficients A001497 or, if one wishes, the right-hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next left- (right-) hand columns of A001497 (A001498). An interesting phenomenon.
If one assumes the triangle not (1,1) based but (0,0) based, one has T(n, k) = E2(n, n-k), where E2(n, k) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 12 2021

Examples

			Triangle starts:
[ 1]      1;
[ 2]      1,       0;
[ 3]      2,       1,      0;
[ 4]      6,       8,      1,      0;
[ 5]     24,      58,     22,      1,      0;
[ 6]    120,     444,    328,     52,      1,     0;
[ 7]    720,    3708,   4400,   1452,    114,     1,   0;
[ 8]   5040,   33984,  58140,  32120,   5610,   240,   1,  0;
[ 9]  40320,  341136, 785304, 644020, 195800, 19950, 494,  1, 0;
The first few W1(z,p) polynomials are
W1(z,p=1) = 1/(1-z);
W1(z,p=2) = (1 + 0*z)/(1-z)^3;
W1(z,p=3) = (2 + 1*z + 0*z^2)/(1-z)^5;
W1(z,p=4) = (6 + 8*z + 1*z^2 + 0*z^3)/(1-z)^7.
		

Crossrefs

Row sums equal A001147.
A000142, A002538, A002539, A112008, A112485 are the first few left hand columns.
A000007, A000012, A005803(n+2), A004301, A006260 are the first few right hand columns.
Cf. A163931 (E(x,m,n)), A048994 (Stirling1) and A008517 (Euler).
Cf. A112007, A163937 (E(x,m=2,n)), A163938 (E(x,m=3,n)) and A163939 (E(x,m=4,n)).
Cf. A001497 (Bessel), A001498 (Bessel), A001147 (m=1), A001147 (m=2), A001879 (m=3) and A000457 (m=4), A001880 (m=5), A001881 (m=6) and A038121 (m=7).
Cf. A340556.

Programs

  • Maple
    with(combinat): a := proc(n, m): add((-1)^(n+k+1)*binomial(2*n-1, k)*stirling1(m+n-k-1, m-k), k=0..m-1) end: seq(seq(a(n, m), m=1..n), n=1..9);  # Johannes W. Meijer, revised Nov 27 2012
  • Mathematica
    Table[Sum[(-1)^(n + k + 1)*Binomial[2*n - 1, k]*StirlingS1[m + n - k - 1, m - k], {k, 0, m - 1}], {n, 1, 10}, {m, 1, n}] // Flatten (* G. C. Greubel, Aug 13 2017 *)
  • PARI
    for(n=1,10, for(m=1,n, print1(sum(k=0,m-1,(-1)^(n+k+1)* binomial(2*n-1,k)*stirling(m+n-k-1,m-k, 1)), ", "))) \\ G. C. Greubel, Aug 13 2017
    
  • PARI
    \\ assuming offset = 0:
    E2poly(n,x) = if(n == 0, 1, x*(x-1)^(2*n)*deriv((1-x)^(1-2*n)*E2poly(n-1,x)));
    { for(n = 0, 9, print(Vec(E2poly(n,x)))) } \\ Peter Luschny, Feb 12 2021

Formula

a(n, m) = Sum_{k=0..(m-1)} (-1)^(n+k+1)*binomial(2*n-1,k)*Stirling1(m+n-k-1,m-k), for 1 <= m <= n.
Assuming offset = 0 the T(n, k) are the coefficients of recursively defined polynomials. T(n, k) = [x^k] x^n*E2poly(n, 1/x), where E2poly(n, x) = x*(x - 1)^(2*n)*d_{x}((1 - x)^(1 - 2*n)*E2poly(n - 1, x))) for n >= 1 and E2poly(0, x) = 1. - Peter Luschny, Feb 12 2021

A083061 Triangle of coefficients of a companion polynomial to the Gandhi polynomial.

Original entry on oeis.org

1, 1, 3, 4, 15, 15, 34, 147, 210, 105, 496, 2370, 4095, 3150, 945, 11056, 56958, 111705, 107415, 51975, 10395, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490
Offset: 0

Author

Hans J. H. Tuenter, Apr 19 2003

Keywords

Comments

This polynomial arises in the setting of a symmetric Bernoulli random walk and occurs in an expression for the even moments of the absolute distance from the origin after an even number of timesteps. The Gandhi polynomial, sequence A036970, occurs in an expression for the odd moments.
When formatted as a square array, first row is A002105, first column is A001147, second column is A001880.
Another version of the triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 3, 6, 10, 15, 21, 28, ...] DELTA [1, 2, 3, 4, 5, 6, 7, 8, 9, ...] = 1; 0, 1; 0, 1, 3; 0, 4, 15, 15; 0, 34, 147, 210, 105; ... where DELTA is the operator defined in A084938. - Philippe Deléham, Jun 07 2004
In A160464 we defined the coefficients of the ES1 matrix. Our discovery that the n-th term of the row coefficients ES1[1-2*m,n] for m>=1, can be generated with rather simple polynomials led to triangle A094665 and subsequently to this one. - Johannes W. Meijer, May 24 2009
Related to polynomials defined in A160485 by a shift of +-1/2 and scaling by a power of 2. - Richard P. Brent, Jul 15 2014

Examples

			Triangle starts (with an additional first column 1,0,0,...):
[1]
[0,      1]
[0,      1,       3]
[0,      4,      15,      15]
[0,     34,     147,     210,     105]
[0,    496,    2370,    4095,    3150,     945]
[0,  11056,   56958,  111705,  107415,   51975,  10395]
[0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135]
		

Crossrefs

From Johannes W. Meijer, May 24 2009 and Jun 27 2009: (Start)
A002105 equals the row sums (n>=2) and the first left hand column (n>=1).
A001147, A001880, A160470, A160471 and A160472 are the first five right hand columns.
Appears in A162005, A162006 and A162007.
(End)

Programs

  • Maple
    imax := 6;
    T1(0, x) := 1:
    T1(0, x+1) := 1:
    for i from 1 to imax do
        T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2*x^2*T1(i-1, x)):
        dx := degree(T1(i, x)):
        for k from 0 to dx do
            c(k) := coeff(T1(i, x), x, k)
        od:
        T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx):
    od:
    for i from 0 to imax do
        for j from 0 to i do
            a(i, j) := coeff(T1(i, x), x, j)
        od:
    od:
    seq(seq(a(i, j), j = 0..i), i = 0..imax);
    # Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012
  • Mathematica
    b[0, 0] = 1;
    b[n_, k_] := b[n, k] = Sum[2^j*(Binomial[k + j, 1 + j] + Binomial[k + j + 1, 1 + j])*b[n - 1, k - 1 + j], {j, Max[0, 1 - k], n - k}];
    a[0, 0] = 1;
    a[n_, k_] := b[n, k]/2^(n - k);
    Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018, after Philippe Deléham *)
  • Sage
    # uses[fr2_row from A088874]
    A083061_row = lambda n: [(-1)^(n-k)*m*2^(-n+k) for k,m in enumerate(fr2_row(n))]
    for n in (0..7): print(A083061_row(n)) # Peter Luschny, Sep 19 2017

Formula

Let T(i, x)=(2x+1)(x+1)T(i-1, x+1)-2x^2T(i-1, x), T(0, x)=1; so that T(1, x)=1+3x; T(2, x)=4+15x+15x^2; T(3, x)=34+147x+210x^2+105x^3, etc. Then the (i, j)-th entry in the table is the coefficient of x^j in T(i, x).
a(n, k)*2^(n-k) = A085734(n, k). - Philippe Deléham, Feb 27 2005

A160470 Third right hand column of triangles A094665 and A083061.

Original entry on oeis.org

4, 147, 4095, 107415, 2837835, 77567490, 2219186970, 66782365650, 2117393828550, 70731036701325, 2487181536464625, 91943495971952625, 3567666639475063125, 145075480675658032500, 6172232487370191742500
Offset: 0

Author

Johannes W. Meijer, May 24 2009

Keywords

Crossrefs

Equals third right hand column of the triangles A094665 and A083061. Other right hand columns are A001147, A001880, A160471 and A160472.

Formula

a(n+1) = (10*n^3+117*n^2+455*n+588)*a(n)/(5*n^2+21*n+16) with a(0) = 4.

A160471 Fourth right hand column of triangles A094665 and A083061.

Original entry on oeis.org

34, 2370, 111705, 4579575, 178378200, 6873506640, 267565948650, 10644585301350, 435650179214250, 18411603581621250, 805168495577320875, 36472461710322763125, 1711907729642450340000, 83253368434295609550000
Offset: 0

Author

Johannes W. Meijer, May 24 2009

Keywords

Crossrefs

Equals fourth right hand column of the triangles A094665 and A083061. Other right hand columns are A001147, A001880, A160470 and A160472.

Formula

a(n+1) = ((70*n^4+1407*n^3+10520*n^2+34707*n+42660)*a(n))/(35*n^3+336*n^2+913*n +612) with a(0) = 34.

A160472 Fifth right hand column of triangles A094665 and A083061.

Original entry on oeis.org

496, 56958, 4114110, 244909665, 13285256985, 689604310395, 35192429807535, 1794448057577175, 92348727438342375, 4828071577102648875, 257517575815061937375, 14052167988805344147750, 785907013343403755553750
Offset: 0

Author

Johannes W. Meijer, May 24 2009

Keywords

Crossrefs

Equals fifth right hand column of the triangles A094665 and A083061. Other right hand columns are A001147, A001880, A160470 and A160471.

Formula

a(n+1) = ((350*n^5+10745*n^4+130432*n^3+783031*n^2+2325618*n+2733984)* a(n))/(175*n^4+3010*n^3+17441*n^2+38414*n+23808) with a(0) = 496.

A038121 E.g.f.: (1 + 15*x + (45/2)*x^2 + (5/2)*x^3)/(1 - 2*x)^(13/2).

Original entry on oeis.org

1, 28, 630, 13860, 315315, 7567560, 192972780, 5237832600, 151242416325, 4638100767300, 150738274937250, 5179915266025500, 187771928393424375, 7164221267933730000, 287080580807915895000, 12057384393932467590000
Offset: 0

Author

Keywords

Crossrefs

Column 6 of triangle A001497.

Programs

  • Magma
    [Factorial(2*n+6)/ (720*Factorial(n)*2^n): n in [0..20]]; // Vincenzo Librandi, Nov 22 2011
    
  • Mathematica
    Table[(2n+6)!/(6!*n!*2^n),{n,0,20}] (* Vincenzo Librandi, Nov 22 2011 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace((1+15*x+45/2*x^2+5/2*x^3)/(1-2*x)^(13/2))) \\ G. C. Greubel, Aug 13 2017

Formula

a(n) = (2n+6)! / (6!*n!*2^n).
n*a(n) - (n+3)*(2*n+5)*a(n-1) = 0. - R. J. Mathar, Oct 31 2015

A261065 Second column of A086872.

Original entry on oeis.org

1, 8, 75, 840, 11025, 166320, 2837835, 54054000, 1137161025, 26189163000, 655383804075, 17709112020600, 513880482740625, 15938200818540000, 526174085058496875, 18422283260401020000, 681816379418800250625, 26597171457203972625000, 1090705672840839577396875
Offset: 1

Author

R. J. Mathar, Aug 08 2015

Keywords

Crossrefs

Cf. A086872.

Formula

(n-1)*(n+1)*a(n) -n*(n+2)*(2*n-1)*a(n-1)=0.
G.f. x*3F1(3/2,4,2; 3; 2x).
a(n) = A001879(n-1)+2*A001880(n+2).
Showing 1-10 of 12 results. Next