cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A094665 Another version of triangular array in A083061: triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 3, 6, 10, 15, 21, 28, ...] DELTA [1, 2, 3, 4, 5, 6, 7, 8, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 4, 15, 15, 0, 34, 147, 210, 105, 0, 496, 2370, 4095, 3150, 945, 0, 11056, 56958, 111705, 107415, 51975, 10395, 0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 0, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490, 18918900, 2027025
Offset: 0

Views

Author

Philippe Deléham, Jun 07 2004, Jun 12 2007

Keywords

Comments

Define polynomials P(n,x) = x(2x+1)P(n-1,x+1) - 2x^2P(n-1,x), P(0,x) = 1. Sequence gives triangle read by rows, defined by P(n,x) = Sum_{k = 0..n} T(n,k)*x^k. - Philippe Deléham, Jun 20 2004
From Johannes W. Meijer, May 24 2009: (Start)
In A160464 we defined the coefficients of the ES1 matrix by ES1[2*m-1,n=1] = 2*eta(2*m-1) and the recurrence relation ES1[2*m-1,n] = ((2*n-2)/(2*n-1))*(ES1[2*m-1,n-1] - ES1[2*m-3,n-1]/(n-1)^2) for m the positive and negative integers and n >= 1. As usual eta(m) = (1-2^(1-m))*zeta(m) with eta(m) the Dirichlet eta function and zeta(m) the Riemann zeta function. It is well-known that ES1[1-2*m,n=1] = (4^m-1)*(-bernoulli(2*m))/m for m >= 1. and together with the recurrence relation this leads to ES1[-1,n] = 0.5 for n >= 1.
We discovered that the n-th term of the row coefficients ES1[1-2*m,n] for m >= 1, can be generated with the rather simple polynomials RES1(1-2*m,n) = (-1)^(m+1)*ECGP(1-2*m, n)/2^m. This discovery was enabled by the recurrence relation for the RES1(1-2*m,n) which we derived from the recurrence relation for the ES1[2*m-1,n] coefficients and the fact that RES1(-1,n) = 0.5. The coefficients of the ECGP(1-2*m,n) polynomials led to this triangle and subsequently to triangle A083061. (End)
From David Callan, Jan 03 2011: (Start)
T(n,k) is the number of increasing 0-2 trees (A002105) on 2n edges in which the minimal path from the root has length k.
Proof. The number a(n,k) of such trees satisfies the recurrence a(0,0)=1, a(1,1)=1 and, counting by size of the subtree rooted at the smaller child of the root,
a(n,k) = Sum_{j=1..n-1} C(2n-1,j)*a(j,k-1)*a(n-1-j)
for 2<=k<=n, where a(n) = Sum_{k>=0} a(n,k) is the reduced tangent number A002105 (indexed from 0). The recurrence translates into the differential equation
F_x(x,y) = y*F(x,y)*G(x)
for the GF F(x,y) = Sum_{n,k>=0} a(n,k)x^(2n)/(2n)!*y^k, where G(x):=Sum_{n>=0} a(n)x^(2n+1)/(2n+1)! is known to be sqrt(2)*tan(x/sqrt(2)). The differential equation has solution F(x,y) = sec(x/sqrt(2))^(2y). (End)

Examples

			Triangle begins:
.1;
.0, 1;
.0, 1, 3;
.0, 4, 15, 15;
.0, 34, 147, 210, 105;
.0, 496, 2370, 4095, 3150, 945;
.0, 11056, 56958, 111705, 107415, 51975, 10395;
.0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135;
From _Johannes W. Meijer_, May 24 2009: (Start)
The first few ECGP(1-2*m,n) polynomials are: ECGP(-1,n) = 1; ECGP(-3,n) = n; ECGP(-5,n) = n + 3*n^2; ECGP(-7,n) = 4*n + 15*n^2+ 15*n^3 .
The first few RES1(1-2*m,n) are: RES1(-1,n) = (1/2)*(1); RES1(-3,n) = (-1/4)*(n); RES1(-5,n) = (1/8)*(n+3*n^2); RES1(-7,n) = (-1/16)*(4*n+15*n^2+15*n^3).
(End)
		

Crossrefs

From Johannes W. Meijer, May 24 2009 and Jun 27 2009: (Start)
A001147, A001880, A160470, A160471 and A160472 are the first five right hand columns.
Appears in A162005, A162006 and A162007.
(End)

Programs

  • Maple
    nmax:=7; imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2 * x^2 * T1(i-1, x)): dx:=degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1=0..dx) od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do T(n+1, k+1) := A083061(n, k) od: od: T(0, 0):=1: for n from 1 to nmax do T(n, 0):=0 od: seq(seq(T(n, k), k=0..n), n=0..nmax);
    # Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012
  • Mathematica
    nmax = 8;
    T[n_, k_] := SeriesCoefficient[Sec[x/Sqrt[2]]^(2y), {x, 0, 2n}, {y, 0, k}]* (2n)!;
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)

Formula

Sum_{k = 0..n} T(n, k) = A002105(n+1).
Sum_{k = 0..n} T(n, k)*2^(n-k) = A000364(n); Euler numbers.
Sum_{k = 0..n} T(n, k)*(-2)^(n-k) = 1.
RES1(1-2*m,n) = n^2*RES1(3-2*m,n)-n*(2*n+1)*RES1(3-2*m,n+1)/2 for m >= 2, with RES1(-1,n) = 0.5 for n >= 1. - Johannes W. Meijer, May 24 2009
G.f.: Sum_{n,k>=0} T(n,k)x^n/n!*y^k = sec(x/sqrt(2))^(2y).

Extensions

Term corrected by Johannes W. Meijer, Sep 23 2012

A083061 Triangle of coefficients of a companion polynomial to the Gandhi polynomial.

Original entry on oeis.org

1, 1, 3, 4, 15, 15, 34, 147, 210, 105, 496, 2370, 4095, 3150, 945, 11056, 56958, 111705, 107415, 51975, 10395, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490
Offset: 0

Views

Author

Hans J. H. Tuenter, Apr 19 2003

Keywords

Comments

This polynomial arises in the setting of a symmetric Bernoulli random walk and occurs in an expression for the even moments of the absolute distance from the origin after an even number of timesteps. The Gandhi polynomial, sequence A036970, occurs in an expression for the odd moments.
When formatted as a square array, first row is A002105, first column is A001147, second column is A001880.
Another version of the triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 3, 6, 10, 15, 21, 28, ...] DELTA [1, 2, 3, 4, 5, 6, 7, 8, 9, ...] = 1; 0, 1; 0, 1, 3; 0, 4, 15, 15; 0, 34, 147, 210, 105; ... where DELTA is the operator defined in A084938. - Philippe Deléham, Jun 07 2004
In A160464 we defined the coefficients of the ES1 matrix. Our discovery that the n-th term of the row coefficients ES1[1-2*m,n] for m>=1, can be generated with rather simple polynomials led to triangle A094665 and subsequently to this one. - Johannes W. Meijer, May 24 2009
Related to polynomials defined in A160485 by a shift of +-1/2 and scaling by a power of 2. - Richard P. Brent, Jul 15 2014

Examples

			Triangle starts (with an additional first column 1,0,0,...):
[1]
[0,      1]
[0,      1,       3]
[0,      4,      15,      15]
[0,     34,     147,     210,     105]
[0,    496,    2370,    4095,    3150,     945]
[0,  11056,   56958,  111705,  107415,   51975,  10395]
[0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135]
		

Crossrefs

From Johannes W. Meijer, May 24 2009 and Jun 27 2009: (Start)
A002105 equals the row sums (n>=2) and the first left hand column (n>=1).
A001147, A001880, A160470, A160471 and A160472 are the first five right hand columns.
Appears in A162005, A162006 and A162007.
(End)

Programs

  • Maple
    imax := 6;
    T1(0, x) := 1:
    T1(0, x+1) := 1:
    for i from 1 to imax do
        T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2*x^2*T1(i-1, x)):
        dx := degree(T1(i, x)):
        for k from 0 to dx do
            c(k) := coeff(T1(i, x), x, k)
        od:
        T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx):
    od:
    for i from 0 to imax do
        for j from 0 to i do
            a(i, j) := coeff(T1(i, x), x, j)
        od:
    od:
    seq(seq(a(i, j), j = 0..i), i = 0..imax);
    # Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012
  • Mathematica
    b[0, 0] = 1;
    b[n_, k_] := b[n, k] = Sum[2^j*(Binomial[k + j, 1 + j] + Binomial[k + j + 1, 1 + j])*b[n - 1, k - 1 + j], {j, Max[0, 1 - k], n - k}];
    a[0, 0] = 1;
    a[n_, k_] := b[n, k]/2^(n - k);
    Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018, after Philippe Deléham *)
  • Sage
    # uses[fr2_row from A088874]
    A083061_row = lambda n: [(-1)^(n-k)*m*2^(-n+k) for k,m in enumerate(fr2_row(n))]
    for n in (0..7): print(A083061_row(n)) # Peter Luschny, Sep 19 2017

Formula

Let T(i, x)=(2x+1)(x+1)T(i-1, x+1)-2x^2T(i-1, x), T(0, x)=1; so that T(1, x)=1+3x; T(2, x)=4+15x+15x^2; T(3, x)=34+147x+210x^2+105x^3, etc. Then the (i, j)-th entry in the table is the coefficient of x^j in T(i, x).
a(n, k)*2^(n-k) = A085734(n, k). - Philippe Deléham, Feb 27 2005

A001880 Coefficients of Bessel polynomials y_n (x).

Original entry on oeis.org

1, 15, 210, 3150, 51975, 945945, 18918900, 413513100, 9820936125, 252070693875, 6957151150950, 205552193096250, 6474894082531875, 216659917377028125, 7675951358500425000, 287080580807915895000, 11303797869311688365625, 467445288360359818884375
Offset: 4

Views

Author

Keywords

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A001518.
Column 4 of triangle A001497.
Equals the second right hand column of the triangles A094665 and A083061.
Other right hand columns are A001147, A160470, A160471 and A160472.

Programs

  • Mathematica
    nn = 25; t = Range[0, nn]! CoefficientList[Series[x (1 + x/2)/(1 - 2 x)^(7/2), {x, 0, nn}], x]; Drop[t, 1] (* T. D. Noe, Aug 10 2012 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(x*(1 + x/2)/(1 - 2*x)^(7/2))) \\ G. C. Greubel, Aug 13 2017

Formula

E.g.f.: x*(1 + x/2)/(1 - 2*x)^(7/2); or, if shifted, (1+ 6x+ 3x^2/2!) / (1-2x)^(9/2).
a(n) = (2*n-4)!/(4!*(n-4)!*2^(n-4)).
(n-4)*a(n) = (n-2)*(2*n-5)*a(n-1) for n = 5, 6, .. , with a(4) = 1. - Johannes W. Meijer, May 24 2009
G.f.: x^4*2F0(5/2,3;;2x). - R. J. Mathar, Aug 08 2015

A160470 Third right hand column of triangles A094665 and A083061.

Original entry on oeis.org

4, 147, 4095, 107415, 2837835, 77567490, 2219186970, 66782365650, 2117393828550, 70731036701325, 2487181536464625, 91943495971952625, 3567666639475063125, 145075480675658032500, 6172232487370191742500
Offset: 0

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Crossrefs

Equals third right hand column of the triangles A094665 and A083061. Other right hand columns are A001147, A001880, A160471 and A160472.

Formula

a(n+1) = (10*n^3+117*n^2+455*n+588)*a(n)/(5*n^2+21*n+16) with a(0) = 4.

A160471 Fourth right hand column of triangles A094665 and A083061.

Original entry on oeis.org

34, 2370, 111705, 4579575, 178378200, 6873506640, 267565948650, 10644585301350, 435650179214250, 18411603581621250, 805168495577320875, 36472461710322763125, 1711907729642450340000, 83253368434295609550000
Offset: 0

Views

Author

Johannes W. Meijer, May 24 2009

Keywords

Crossrefs

Equals fourth right hand column of the triangles A094665 and A083061. Other right hand columns are A001147, A001880, A160470 and A160472.

Formula

a(n+1) = ((70*n^4+1407*n^3+10520*n^2+34707*n+42660)*a(n))/(35*n^3+336*n^2+913*n +612) with a(0) = 34.
Showing 1-5 of 5 results.