A094665
Another version of triangular array in A083061: triangle T(n,k), 0<=k<=n, read by rows; given by [0, 1, 3, 6, 10, 15, 21, 28, ...] DELTA [1, 2, 3, 4, 5, 6, 7, 8, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 4, 15, 15, 0, 34, 147, 210, 105, 0, 496, 2370, 4095, 3150, 945, 0, 11056, 56958, 111705, 107415, 51975, 10395, 0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 0, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490, 18918900, 2027025
Offset: 0
Triangle begins:
.1;
.0, 1;
.0, 1, 3;
.0, 4, 15, 15;
.0, 34, 147, 210, 105;
.0, 496, 2370, 4095, 3150, 945;
.0, 11056, 56958, 111705, 107415, 51975, 10395;
.0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135;
From _Johannes W. Meijer_, May 24 2009: (Start)
The first few ECGP(1-2*m,n) polynomials are: ECGP(-1,n) = 1; ECGP(-3,n) = n; ECGP(-5,n) = n + 3*n^2; ECGP(-7,n) = 4*n + 15*n^2+ 15*n^3 .
The first few RES1(1-2*m,n) are: RES1(-1,n) = (1/2)*(1); RES1(-3,n) = (-1/4)*(n); RES1(-5,n) = (1/8)*(n+3*n^2); RES1(-7,n) = (-1/16)*(4*n+15*n^2+15*n^3).
(End)
-
nmax:=7; imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2 * x^2 * T1(i-1, x)): dx:=degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1=0..dx) od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do T(n+1, k+1) := A083061(n, k) od: od: T(0, 0):=1: for n from 1 to nmax do T(n, 0):=0 od: seq(seq(T(n, k), k=0..n), n=0..nmax);
# Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012
-
nmax = 8;
T[n_, k_] := SeriesCoefficient[Sec[x/Sqrt[2]]^(2y), {x, 0, 2n}, {y, 0, k}]* (2n)!;
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
A083061
Triangle of coefficients of a companion polynomial to the Gandhi polynomial.
Original entry on oeis.org
1, 1, 3, 4, 15, 15, 34, 147, 210, 105, 496, 2370, 4095, 3150, 945, 11056, 56958, 111705, 107415, 51975, 10395, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135, 14873104, 85389132, 197722980, 244909665, 178378200, 77567490
Offset: 0
Triangle starts (with an additional first column 1,0,0,...):
[1]
[0, 1]
[0, 1, 3]
[0, 4, 15, 15]
[0, 34, 147, 210, 105]
[0, 496, 2370, 4095, 3150, 945]
[0, 11056, 56958, 111705, 107415, 51975, 10395]
[0, 349504, 1911000, 4114110, 4579575, 2837835, 945945, 135135]
- R. P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014.
- R. B. Brent, Generalizing Tuenter's Binomial Sums, J. Int. Seq. 18 (2015) # 15.3.2.
- Marc Joye, Pascal Paillier and Berry Schoenmakers, On Second-Order Differential Power Analysis, in Cryptographic Hardware and Embedded Systems-CHES 2005, editors: Josyula R. Rao and Berk Sunar, Lecture Notes in Computer Science 3659 (2005) 293-308, Springer-Verlag.
- H. J. H. Tuenter, Walking into an absolute sum, The Fibonacci Quarterly, 40 (2002), 175-180.
A002105 equals the row sums (n>=2) and the first left hand column (n>=1).
(End)
-
imax := 6;
T1(0, x) := 1:
T1(0, x+1) := 1:
for i from 1 to imax do
T1(i, x) := expand((2*x+1) * (x+1) * T1(i-1, x+1) - 2*x^2*T1(i-1, x)):
dx := degree(T1(i, x)):
for k from 0 to dx do
c(k) := coeff(T1(i, x), x, k)
od:
T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx):
od:
for i from 0 to imax do
for j from 0 to i do
a(i, j) := coeff(T1(i, x), x, j)
od:
od:
seq(seq(a(i, j), j = 0..i), i = 0..imax);
# Johannes W. Meijer, Jun 27 2009, revised Sep 23 2012
-
b[0, 0] = 1;
b[n_, k_] := b[n, k] = Sum[2^j*(Binomial[k + j, 1 + j] + Binomial[k + j + 1, 1 + j])*b[n - 1, k - 1 + j], {j, Max[0, 1 - k], n - k}];
a[0, 0] = 1;
a[n_, k_] := b[n, k]/2^(n - k);
Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018, after Philippe Deléham *)
-
# uses[fr2_row from A088874]
A083061_row = lambda n: [(-1)^(n-k)*m*2^(-n+k) for k,m in enumerate(fr2_row(n))]
for n in (0..7): print(A083061_row(n)) # Peter Luschny, Sep 19 2017
A001880
Coefficients of Bessel polynomials y_n (x).
Original entry on oeis.org
1, 15, 210, 3150, 51975, 945945, 18918900, 413513100, 9820936125, 252070693875, 6957151150950, 205552193096250, 6474894082531875, 216659917377028125, 7675951358500425000, 287080580807915895000, 11303797869311688365625, 467445288360359818884375
Offset: 4
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 4..100
- Selden Crary, Richard Diehl Martinez, Michael Saunders, The Nu Class of Low-Degree-Truncated Rational Multifunctions. Ib. Integrals of Matern-correlation functions for all odd-half-integer class parameters, arXiv:1707.00705 [stat.ME], 2017, Table 1.
- J. Riordan, Notes to N. J. A. Sloane, Jul. 1968
- Index entries for sequences related to Bessel functions or polynomials
Equals the second right hand column of the triangles
A094665 and
A083061.
-
nn = 25; t = Range[0, nn]! CoefficientList[Series[x (1 + x/2)/(1 - 2 x)^(7/2), {x, 0, nn}], x]; Drop[t, 1] (* T. D. Noe, Aug 10 2012 *)
-
x='x+O('x^50); Vec(serlaplace(x*(1 + x/2)/(1 - 2*x)^(7/2))) \\ G. C. Greubel, Aug 13 2017
A160471
Fourth right hand column of triangles A094665 and A083061.
Original entry on oeis.org
34, 2370, 111705, 4579575, 178378200, 6873506640, 267565948650, 10644585301350, 435650179214250, 18411603581621250, 805168495577320875, 36472461710322763125, 1711907729642450340000, 83253368434295609550000
Offset: 0
A160472
Fifth right hand column of triangles A094665 and A083061.
Original entry on oeis.org
496, 56958, 4114110, 244909665, 13285256985, 689604310395, 35192429807535, 1794448057577175, 92348727438342375, 4828071577102648875, 257517575815061937375, 14052167988805344147750, 785907013343403755553750
Offset: 0
Showing 1-5 of 5 results.
Comments