A386760 Numbers k such that the number of decimal digits of the Lucas number L(k) is greater than the number of decimal digits of the Fibonacci number F(k).
5, 6, 10, 11, 15, 16, 20, 24, 25, 29, 30, 34, 35, 39, 44, 48, 49, 53, 54, 58, 59, 63, 67, 68, 72, 73, 77, 78, 82, 83, 87, 91, 92, 96, 97, 101, 102, 106, 111, 115, 116, 120, 121, 125, 126, 130, 134, 135, 139, 140, 144, 145, 149, 150, 154, 158, 159, 163, 164, 168
Offset: 1
A386758 Number of decimal digits in the n-th Lucas number.
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17
Offset: 0
Comments
As F(n)<=L(n), the number of decimal digits of the Lucas number L(n) is at least as large as the number of decimal digits of the Fibonacci number F(n). Furthermore, the difference is at most one. The indices for which the difference is one is A386760.
Examples
L(0)=2 has one digit, so that a(0)=1; L(5)=11 has two digits, so that a(5)=2.
Links
- Hans J. H. Tuenter, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
a:= n-> 1+floor(n*log[10]((1+sqrt(5))/2)): seq(a(n), n=0..81);
-
Mathematica
a[n_] := IntegerLength[LucasL[n]]; Array[a, 100, 0] (* Amiram Eldar, Aug 16 2025 *)
A363753 a(n) = Sum_{k=0..n} (-1)^k*F(k-1)*F(k)*F(k+1)/2, where F(n) is the Fibonacci number A000045(n).
0, 0, 1, -2, 13, -47, 213, -879, 3762, -15873, 67342, -285098, 1207966, -5116586, 21674919, -91815276, 388937619, -1647563169, 6979194475, -29564334305, 125236542640, -530510487155, 2247278519916, -9519624520452, 40325776676748, -170822731106052, 723616701297373
Offset: 0
Comments
Alternating sum of the product of three consecutive Fibonacci numbers, divided by two.
Can also be seen as the alternating sum of the Fibonomial coefficients (n+1,3), A001655.
This sequence is part of a suite of sums over triple products of Fibonacci numbers. Subba Rao (1953) gives closed-form expressions for several Fibonacci sums of this type.
Links
- K. Subba Rao, Some properties of Fibonacci numbers, The American Mathematical Monthly, 60(10):680-684, December 1953.
- Index entries for linear recurrences with constant coefficients, signature (-2,9,-3,-4,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{-2, 9, -3, -4, 1}, {0, 0, 1, -2, 13}, 27]
Formula
a(n) = ((-1)^n*(F(n+1)^3 - F(n)^3) + F(n+2) - 2)/8.
a(n) = ((-1)^n*F(3*n+1) + 4*F(n+2) - 5)/20.
a(n) = -2*a(n-1) + 9*a(n-2) - 3*a(n-3) - 4*a(n-4) + a(n-5).
a(-n) = A215037(n-3).
G.f.: x^2/((1 - x)*(1 + 4*x - x^2)*(1 - x - x^2)).
A363754 a(n) = Sum_{k=0..n} F(2k-1)*F(2k)*F(2k+1)/2, where F(n) is the Fibonacci number A000045(n).
0, 1, 16, 276, 4917, 88132, 1581196, 28372701, 509125596, 9135883240, 163936760185, 2941725767256, 52787126964456, 947226559367881, 16997290941068152, 305004010378316172, 5473074895864584141, 98210344115173624636, 1762313119177232976916, 31623425801074947486405
Offset: 0
Comments
This is one of the triple Fibonacci sums that were considered by Subba Rao (1953).
Taking any of the given closed-form expressions for a(n) with Fibonacci numbers, one can extend a(n) to negative indices by using the property F(-n)=(-1)^(n+1). This gives a(-n)=a(n-1).
Links
- K. Subba Rao, Some properties of Fibonacci numbers, The American Mathematical Monthly, 60(10):680-684, December 1953.
- Index entries for linear recurrences with constant coefficients, signature (22,-77,77,-22,1).
Programs
-
Mathematica
LinearRecurrence[{22, -77, 77, -22, 1}, {0, 1, 16, 276, 4917}]
Formula
a(n) = (F(2n+1)^3 + F(2n+1) - 2)/8.
a(n) = (F(6*n+3)+8*F(2*n+1)-10)/40.
a(n) = 22*a(n-1) - 77*a(n-2) + 77*a(n-3) - 22*a(n-4) + a(n-5).
G.f.: x*(1 - 6*x + x^2)/((1 - x)*(1 - 3*x + x^2)*(1 - 18*x + x^2)).
A363499 a(n) = Sum_{k=0..n} floor(sqrt(k))^5.
0, 1, 2, 3, 35, 67, 99, 131, 163, 406, 649, 892, 1135, 1378, 1621, 1864, 2888, 3912, 4936, 5960, 6984, 8008, 9032, 10056, 11080, 14205, 17330, 20455, 23580, 26705, 29830, 32955, 36080, 39205, 42330, 45455, 53231, 61007, 68783, 76559, 84335, 92111, 99887
Offset: 0
Comments
Partial sums of the fifth powers of the terms of A000196.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
Table[(n + 1) #^5 - (1/84) # (# + 1)*(2 # + 1)*(3 # - 1)*(10 #^3 - 7 # + 4) &[Floor@ Sqrt[n]], {n, 0, 42}] (* Michael De Vlieger, Jun 10 2023 *)
-
Python
from math import isqrt def A363499(n): return (m:=isqrt(n))**5 *(n+1) - (m*(m+1)*(2*m+1)*(3*m-1)*(10*m**3-7*m+4))//84 # Karl-Heinz Hofmann, Jul 17 2023
Formula
a(n) = (n+1)*m^5 - (1/84)*m*(m+1)*(2*m+1)*(3*m-1)*(10*m^3-7*m+4), where m = floor(sqrt(n)).
A363497 a(n) = Sum_{k=0..n} floor(sqrt(k))^3.
0, 1, 2, 3, 11, 19, 27, 35, 43, 70, 97, 124, 151, 178, 205, 232, 296, 360, 424, 488, 552, 616, 680, 744, 808, 933, 1058, 1183, 1308, 1433, 1558, 1683, 1808, 1933, 2058, 2183, 2399, 2615, 2831, 3047, 3263, 3479, 3695, 3911, 4127, 4343, 4559, 4775, 4991, 5334
Offset: 0
Comments
Partial sums of the third powers of the terms of A000196.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
Table[(n + 1) #^3 - (1/60) # (# + 1) (3 # - 1) (12 #^2 + 7 # - 4) &[Floor@ Sqrt[n]], {n, 0, 50}] (* Michael De Vlieger, Jun 10 2023 *)
-
PARI
a(n) = sum(k=0, n, sqrtint(k)^3); \\ Michel Marcus, Jun 06 2023
-
Python
from math import isqrt A363497 = [0] for n in range(1,50): A363497.append(A363497[-1] + isqrt(n)**3) print(A363497) # Karl-Heinz Hofmann, Jun 14 2023
-
Python
from math import isqrt def A363497(n):return (m:=isqrt(n))**3*(n+1)-(m*(m+1)*(3*m-1)*(12*m**2+7*m-4))//60 # Karl-Heinz Hofmann, Jun 14 2023
Formula
a(n) = (n+1)*m^3 - (1/60)*m*(m+1)*(3*m-1)*(12*m^2+7*m-4), where m = floor(sqrt(n)).
A363498 a(n) = Sum_{k=0..n} floor(sqrt(k))^4.
0, 1, 2, 3, 19, 35, 51, 67, 83, 164, 245, 326, 407, 488, 569, 650, 906, 1162, 1418, 1674, 1930, 2186, 2442, 2698, 2954, 3579, 4204, 4829, 5454, 6079, 6704, 7329, 7954, 8579, 9204, 9829, 11125, 12421, 13717, 15013, 16309, 17605, 18901, 20197, 21493, 22789
Offset: 0
Comments
Partial sums of the fourth powers of the terms of A000196.
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
Table[(n + 1) #^4 - (1/30) # (# + 1)*(20 #^4 + 4 #^3 - 14 #^2 + 4 # + 1) &[Floor@ Sqrt[n]], {n, 0, 45}] (* Michael De Vlieger, Jun 10 2023 *)
-
Python
from math import isqrt def A363498(n): return (m:=isqrt(n))**4 *(n+1) - (m*(m+1)*(20*m**4+4*m**3-14*m**2+4*m+1))//30 print([A363498(n) for n in range(0,46)]) # Karl-Heinz Hofmann, Jul 15 2023
Formula
a(n) = (n+1)*m^4 - (1/30)*m*(m+1)*(20*m^4+4*m^3-14*m^2+4*m+1), where m = floor(sqrt(n)).
A134470 Continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).
0, 1, 1, 2, 1, 1, 8, 1, 5, 1, 1, 1, 12, 5, 1, 1, 5, 1, 12, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 2, 2, 2, 1, 11, 1, 6, 1, 3, 2, 1, 1, 1, 1, 1, 2, 6, 7, 1, 4, 2, 1, 1, 1, 13, 1, 1, 1, 2, 4, 2, 11, 1, 2, 5, 1, 8, 1, 78, 10, 1, 64, 1, 29, 1, 3, 1, 1, 1, 2, 1, 12, 1, 2, 1, 4, 1, 2, 1, 2, 32, 1, 92, 1, 14, 1, 10, 12, 2, 3, 16, 2, 1, 1, 1, 1, 8, 3, 15, 1, 2, 2, 1, 4, 4, 2, 8, 1, 1557, 3, 1, 69, 1, 5, 3, 11, 1, 1
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Hans J. H. Tuenter, Overshoot in the Case of Normal Variables: Chernoff's Integral, Latta's Observation and Wijsman's Sum, Sequential Analysis, 26(4) (2007) 481-488.
Crossrefs
Programs
-
Maple
Digits:=100; cfrac(-Zeta(1/2)/sqrt(2*Pi),30,'quotients');
-
Mathematica
ContinuedFraction[ -Zeta[1/2]/Sqrt[2 \[Pi]], 100] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
-
PARI
default(realprecision,1000); c=-zeta(1/2)/sqrt(2*Pi); /* == 0.582597157... (A134469) */ contfrac(c) /* gives 967 terms */
Extensions
More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
A134471 Numerators of the convergents of the continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).
0, 1, 1, 3, 4, 7, 60, 67, 395, 462, 857, 1319, 16685, 84744, 101429, 186173, 1032294, 1218467, 15653898, 16872365, 32526263, 49398628, 81924891, 213248410, 295173301, 508421711, 803595012, 1312016723, 3427628458, 11594902097, 26617432652, 64829767401
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Hans J. H. Tuenter, Overshoot in the Case of Normal Variables: Chernoff's Integral, Latta's Observation and Wijsman's Sum, Sequential Analysis, 26(4) (2007) 481-488.
Crossrefs
Programs
-
Mathematica
Numerator[Convergents[-Zeta[1/2]/Sqrt[2Pi],30]] (* Harvey P. Dale, Sep 07 2015 *)
Extensions
More terms from Harvey P. Dale, Sep 07 2015
A134472 Denominators of the convergents of the continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).
1, 1, 2, 5, 7, 12, 103, 115, 678, 793, 1471, 2264, 28639, 145459, 174098, 319557, 1771883, 2091440, 26869163, 28960603, 55829766, 84790369, 140620135, 366030639, 506650774, 872681413, 1379332187, 2252013600, 5883359387, 19902091761, 45687542909, 111277177579, 268241898067
Offset: 13
Links
- G. C. Greubel, Table of n, a(n) for n = 13..1012
- Hans J. H. Tuenter, Overshoot in the Case of Normal Variables: Chernoff's Integral, Latta's Observation and Wijsman's Sum, Sequential Analysis, 26(4) (2007) 481-488.
Crossrefs
Programs
-
Mathematica
Denominator[Convergents[-Zeta[1/2]/Sqrt[2 Pi], 50]] (* G. C. Greubel, Mar 28 2018 *)
Extensions
Terms a(33) onward added by G. C. Greubel, Mar 28 2018
Comments
Examples
Links
Crossrefs
Programs
Mathematica
Formula