cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Hans J. H. Tuenter

Hans J. H. Tuenter's wiki page.

Hans J. H. Tuenter has authored 12 sequences. Here are the ten most recent ones:

A386760 Numbers k such that the number of decimal digits of the Lucas number L(k) is greater than the number of decimal digits of the Fibonacci number F(k).

Original entry on oeis.org

5, 6, 10, 11, 15, 16, 20, 24, 25, 29, 30, 34, 35, 39, 44, 48, 49, 53, 54, 58, 59, 63, 67, 68, 72, 73, 77, 78, 82, 83, 87, 91, 92, 96, 97, 101, 102, 106, 111, 115, 116, 120, 121, 125, 126, 130, 134, 135, 139, 140, 144, 145, 149, 150, 154, 158, 159, 163, 164, 168
Offset: 1

Author

Hans J. H. Tuenter, Aug 13 2025

Keywords

Comments

The difference in the number of decimal digits, A055642(L(k))-A055642(F(k)) = A060384(k)-A386758(k) is either zero or one. In fact, this difference is ceiling(beta-{k*alpha}), with alpha and beta as defined in the Formula section. This implies that, asymptotically, a fraction of beta=0.349485... of the Lucas numbers has one more decimal digit than the corresponding Fibonacci number. This gives the asymptotic behavior of the sequence as a(n)~n/beta. Conjecture: abs(a(n)-n/beta)

Examples

			5 is a term since F(5)=5 has length 1 decimal digit, but L(5)=11 has length 2 decimal digits which is greater.
		

Programs

  • Mathematica
    Select[Range[168],IntegerLength[LucasL[#]]>IntegerLength[Fibonacci[#]]&] (* James C. McMahon, Aug 28 2025 *)

Formula

The sequence consists of the integers k>=2, for which {k*alpha}A097348, and phi = (1+sqrt(5))/2 = A001622.

A386758 Number of decimal digits in the n-th Lucas number.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17
Offset: 0

Author

Hans J. H. Tuenter, Aug 06 2025

Keywords

Comments

As F(n)<=L(n), the number of decimal digits of the Lucas number L(n) is at least as large as the number of decimal digits of the Fibonacci number F(n). Furthermore, the difference is at most one. The indices for which the difference is one is A386760.

Examples

			L(0)=2 has one digit, so that a(0)=1; L(5)=11 has two digits, so that a(5)=2.
		

Crossrefs

Number of digits of L(p^n): A094057 (p=2), A114469 (p=10).

Programs

  • Maple
    a:= n-> 1+floor(n*log[10]((1+sqrt(5))/2)):
    seq(a(n), n=0..81);
  • Mathematica
    a[n_] := IntegerLength[LucasL[n]]; Array[a, 100, 0] (* Amiram Eldar, Aug 16 2025 *)

Formula

a(n) = A055642(A000032(n)).
a(n) = 1 + floor(n*log_10(phi)), where log_10(phi) = A097348, and phi = (1+sqrt(5))/2 = A001622.

A363753 a(n) = Sum_{k=0..n} (-1)^k*F(k-1)*F(k)*F(k+1)/2, where F(n) is the Fibonacci number A000045(n).

Original entry on oeis.org

0, 0, 1, -2, 13, -47, 213, -879, 3762, -15873, 67342, -285098, 1207966, -5116586, 21674919, -91815276, 388937619, -1647563169, 6979194475, -29564334305, 125236542640, -530510487155, 2247278519916, -9519624520452, 40325776676748, -170822731106052, 723616701297373
Offset: 0

Author

Hans J. H. Tuenter, Jun 19 2023

Keywords

Comments

Alternating sum of the product of three consecutive Fibonacci numbers, divided by two.
Can also be seen as the alternating sum of the Fibonomial coefficients (n+1,3), A001655.
This sequence is part of a suite of sums over triple products of Fibonacci numbers. Subba Rao (1953) gives closed-form expressions for several Fibonacci sums of this type.

Crossrefs

Other sequences with the product of three Fibonacci numbers as a summand (the sequence may have a shifted [and scaled] version of the summand given here).
A005968: F(k)^3, A119284: (-1)^k*F(k)^3, A215037: F(k-1)*F(k)*F(k+1),
A363753: (-1)^k*F(k-1)*F(k)*F(k+1), A163198: F(2k)^3, A163200: F(2k+1)^3,
A256178: F(2k)*F(2k+1)*F(2k+2), this sequence: (-1)^k*F(k-1)*F(k)*F(k+1),
A363754: F(2k-1)*F(2k)*F(2k+1).

Programs

  • Mathematica
    LinearRecurrence[{-2, 9, -3, -4, 1}, {0, 0, 1, -2, 13}, 27]

Formula

a(n) = ((-1)^n*(F(n+1)^3 - F(n)^3) + F(n+2) - 2)/8.
a(n) = ((-1)^n*F(3*n+1) + 4*F(n+2) - 5)/20.
a(n) = -2*a(n-1) + 9*a(n-2) - 3*a(n-3) - 4*a(n-4) + a(n-5).
a(-n) = A215037(n-3).
G.f.: x^2/((1 - x)*(1 + 4*x - x^2)*(1 - x - x^2)).
20*a(n) = (-1)^n*A033887(n) + 4*A000045(n+2) - 5. - R. J. Mathar, Jun 27 2023

A363754 a(n) = Sum_{k=0..n} F(2k-1)*F(2k)*F(2k+1)/2, where F(n) is the Fibonacci number A000045(n).

Original entry on oeis.org

0, 1, 16, 276, 4917, 88132, 1581196, 28372701, 509125596, 9135883240, 163936760185, 2941725767256, 52787126964456, 947226559367881, 16997290941068152, 305004010378316172, 5473074895864584141, 98210344115173624636, 1762313119177232976916, 31623425801074947486405
Offset: 0

Author

Hans J. H. Tuenter, Jun 19 2023

Keywords

Comments

This is one of the triple Fibonacci sums that were considered by Subba Rao (1953).
Taking any of the given closed-form expressions for a(n) with Fibonacci numbers, one can extend a(n) to negative indices by using the property F(-n)=(-1)^(n+1). This gives a(-n)=a(n-1).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{22, -77, 77, -22, 1}, {0, 1, 16, 276, 4917}]

Formula

a(n) = (F(2n+1)^3 + F(2n+1) - 2)/8.
a(n) = (F(6*n+3)+8*F(2*n+1)-10)/40.
a(n) = 22*a(n-1) - 77*a(n-2) + 77*a(n-3) - 22*a(n-4) + a(n-5).
G.f.: x*(1 - 6*x + x^2)/((1 - x)*(1 - 3*x + x^2)*(1 - 18*x + x^2)).

A363499 a(n) = Sum_{k=0..n} floor(sqrt(k))^5.

Original entry on oeis.org

0, 1, 2, 3, 35, 67, 99, 131, 163, 406, 649, 892, 1135, 1378, 1621, 1864, 2888, 3912, 4936, 5960, 6984, 8008, 9032, 10056, 11080, 14205, 17330, 20455, 23580, 26705, 29830, 32955, 36080, 39205, 42330, 45455, 53231, 61007, 68783, 76559, 84335, 92111, 99887
Offset: 0

Author

Hans J. H. Tuenter, Jun 05 2023

Keywords

Comments

Partial sums of the fifth powers of the terms of A000196.

Crossrefs

Sums of powers of A000196: A022554 (1st), A174060 (2nd), A363497 (3rd), A363498 (4th), this sequence (5th).

Programs

  • Mathematica
    Table[(n + 1) #^5 - (1/84) # (# + 1)*(2 # + 1)*(3 # - 1)*(10 #^3 - 7 # + 4) &[Floor@ Sqrt[n]], {n, 0, 42}] (* Michael De Vlieger, Jun 10 2023 *)
  • Python
    from math import isqrt
    def A363499(n): return (m:=isqrt(n))**5 *(n+1) - (m*(m+1)*(2*m+1)*(3*m-1)*(10*m**3-7*m+4))//84 # Karl-Heinz Hofmann, Jul 17 2023

Formula

a(n) = (n+1)*m^5 - (1/84)*m*(m+1)*(2*m+1)*(3*m-1)*(10*m^3-7*m+4), where m = floor(sqrt(n)).

A363497 a(n) = Sum_{k=0..n} floor(sqrt(k))^3.

Original entry on oeis.org

0, 1, 2, 3, 11, 19, 27, 35, 43, 70, 97, 124, 151, 178, 205, 232, 296, 360, 424, 488, 552, 616, 680, 744, 808, 933, 1058, 1183, 1308, 1433, 1558, 1683, 1808, 1933, 2058, 2183, 2399, 2615, 2831, 3047, 3263, 3479, 3695, 3911, 4127, 4343, 4559, 4775, 4991, 5334
Offset: 0

Author

Hans J. H. Tuenter, Jun 05 2023

Keywords

Comments

Partial sums of the third powers of the terms of A000196.

Crossrefs

Sums of powers of A000196: A022554 (1st), A174060 (2nd), this sequence (3rd), A363498 (4th), A363499 (5th).

Programs

  • Mathematica
    Table[(n + 1) #^3 - (1/60) # (# + 1) (3 # - 1) (12 #^2 + 7 # - 4) &[Floor@ Sqrt[n]], {n, 0, 50}] (* Michael De Vlieger, Jun 10 2023 *)
  • PARI
    a(n) = sum(k=0, n, sqrtint(k)^3); \\ Michel Marcus, Jun 06 2023
    
  • Python
    from math import isqrt
    A363497 = [0]
    for n in range(1,50): A363497.append(A363497[-1] + isqrt(n)**3)
    print(A363497) # Karl-Heinz Hofmann, Jun 14 2023
    
  • Python
    from math import isqrt
    def A363497(n):return (m:=isqrt(n))**3*(n+1)-(m*(m+1)*(3*m-1)*(12*m**2+7*m-4))//60
    # Karl-Heinz Hofmann, Jun 14 2023

Formula

a(n) = (n+1)*m^3 - (1/60)*m*(m+1)*(3*m-1)*(12*m^2+7*m-4), where m = floor(sqrt(n)).

A363498 a(n) = Sum_{k=0..n} floor(sqrt(k))^4.

Original entry on oeis.org

0, 1, 2, 3, 19, 35, 51, 67, 83, 164, 245, 326, 407, 488, 569, 650, 906, 1162, 1418, 1674, 1930, 2186, 2442, 2698, 2954, 3579, 4204, 4829, 5454, 6079, 6704, 7329, 7954, 8579, 9204, 9829, 11125, 12421, 13717, 15013, 16309, 17605, 18901, 20197, 21493, 22789
Offset: 0

Author

Hans J. H. Tuenter, Jun 05 2023

Keywords

Comments

Partial sums of the fourth powers of the terms of A000196.

Crossrefs

Sums of powers of A000196: A022554 (1st), A174060 (2nd), A363497 (3rd), this sequence (4th), A363499 (5th).

Programs

  • Mathematica
    Table[(n + 1) #^4 - (1/30) # (# + 1)*(20 #^4 + 4 #^3 - 14 #^2 + 4 # + 1) &[Floor@ Sqrt[n]], {n, 0, 45}] (* Michael De Vlieger, Jun 10 2023 *)
  • Python
    from math import isqrt
    def A363498(n):
        return (m:=isqrt(n))**4 *(n+1) - (m*(m+1)*(20*m**4+4*m**3-14*m**2+4*m+1))//30
    print([A363498(n) for n in range(0,46)]) # Karl-Heinz Hofmann, Jul 15 2023

Formula

a(n) = (n+1)*m^4 - (1/30)*m*(m+1)*(20*m^4+4*m^3-14*m^2+4*m+1), where m = floor(sqrt(n)).

A134470 Continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 8, 1, 5, 1, 1, 1, 12, 5, 1, 1, 5, 1, 12, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 2, 2, 2, 1, 11, 1, 6, 1, 3, 2, 1, 1, 1, 1, 1, 2, 6, 7, 1, 4, 2, 1, 1, 1, 13, 1, 1, 1, 2, 4, 2, 11, 1, 2, 5, 1, 8, 1, 78, 10, 1, 64, 1, 29, 1, 3, 1, 1, 1, 2, 1, 12, 1, 2, 1, 4, 1, 2, 1, 2, 32, 1, 92, 1, 14, 1, 10, 12, 2, 3, 16, 2, 1, 1, 1, 1, 8, 3, 15, 1, 2, 2, 1, 4, 4, 2, 8, 1, 1557, 3, 1, 69, 1, 5, 3, 11, 1, 1
Offset: 0

Author

Hans J. H. Tuenter, Oct 27 2007

Keywords

Crossrefs

Cf. A134469 (Decimal expansion), A134471 (Numerators of continued fraction convergents), A134472 (Denominators of continued fraction convergents).

Programs

  • Maple
    Digits:=100; cfrac(-Zeta(1/2)/sqrt(2*Pi),30,'quotients');
  • Mathematica
    ContinuedFraction[ -Zeta[1/2]/Sqrt[2 \[Pi]], 100] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
  • PARI
    default(realprecision,1000);
    c=-zeta(1/2)/sqrt(2*Pi); /* == 0.582597157... (A134469) */
    contfrac(c) /* gives 967 terms */

Extensions

More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010

A134471 Numerators of the convergents of the continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).

Original entry on oeis.org

0, 1, 1, 3, 4, 7, 60, 67, 395, 462, 857, 1319, 16685, 84744, 101429, 186173, 1032294, 1218467, 15653898, 16872365, 32526263, 49398628, 81924891, 213248410, 295173301, 508421711, 803595012, 1312016723, 3427628458, 11594902097, 26617432652, 64829767401
Offset: 1

Author

Hans J. H. Tuenter, Oct 27 2007

Keywords

Crossrefs

Cf. A134469 (Decimal expansion), A134470 (Continued fraction expansion), A134472 (Denominators of continued fraction convergents).

Programs

  • Mathematica
    Numerator[Convergents[-Zeta[1/2]/Sqrt[2Pi],30]] (* Harvey P. Dale, Sep 07 2015 *)

Extensions

More terms from Harvey P. Dale, Sep 07 2015

A134472 Denominators of the convergents of the continued fraction expansion of -zeta(1/2)/sqrt(2*Pi).

Original entry on oeis.org

1, 1, 2, 5, 7, 12, 103, 115, 678, 793, 1471, 2264, 28639, 145459, 174098, 319557, 1771883, 2091440, 26869163, 28960603, 55829766, 84790369, 140620135, 366030639, 506650774, 872681413, 1379332187, 2252013600, 5883359387, 19902091761, 45687542909, 111277177579, 268241898067
Offset: 13

Author

Hans J. H. Tuenter, Oct 27 2007

Keywords

Crossrefs

Cf. A134469 (Decimal expansion), A134470 (Continued fraction expansion), A134471 (Numerators of continued fraction convergents).

Programs

  • Mathematica
    Denominator[Convergents[-Zeta[1/2]/Sqrt[2 Pi], 50]] (* G. C. Greubel, Mar 28 2018 *)

Extensions

Terms a(33) onward added by G. C. Greubel, Mar 28 2018