cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001498 Triangle a(n,k) (n >= 0, 0 <= k <= n) of coefficients of Bessel polynomials y_n(x) (exponents in increasing order).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 15, 15, 1, 10, 45, 105, 105, 1, 15, 105, 420, 945, 945, 1, 21, 210, 1260, 4725, 10395, 10395, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 1, 45, 990, 13860, 135135, 945945, 4729725, 16216200, 34459425, 34459425
Offset: 0

Views

Author

Keywords

Comments

The row polynomials with exponents in increasing order (e.g., third row: 1+3x+3x^2) are Grosswald's y_{n}(x) polynomials, p. 18, Eq. (7).
Also called Bessel numbers of first kind.
The triangle a(n,k) has factorization [C(n,k)][C(k,n-k)]Diag((2n-1)!!) The triangle a(n-k,k) is A100861, which gives coefficients of scaled Hermite polynomials. - Paul Barry, May 21 2005
Related to k-matchings of the complete graph K_n by a(n,k)=A100861(n+k,k). Related to the Morgan-Voyce polynomials by a(n,k)=(2k-1)!!*A085478(n,k). - Paul Barry, Aug 17 2005
Related to Hermite polynomials by a(n,k)=(-1)^k*A060821(n+k, n-k)/2^n. - Paul Barry, Aug 28 2005
The row polynomials, the Bessel polynomials y(n,x):=Sum_{m=0..n} (a(n,m)*x^m) (called y_{n}(x) in the Grosswald reference) satisfy (x^2)*(d^2/dx^2)y(n,x) + 2*(x+1)*(d/dx)y(n,x) - n*(n+1)*y(n,x) = 0.
a(n-1, m-1), n >= m >= 1, enumerates unordered n-vertex forests composed of m plane (aka ordered) increasing (rooted) trees. Proof from the e.g.f. of the first column Y(z):=1-sqrt(1-2*z) (offset 1) and the Bergeron et al. eq. (8) Y'(z)= phi(Y(z)), Y(0)=0, with out-degree o.g.f. phi(w)=1/(1-w). See their remark on p. 28 on plane recursive trees. For m=1 see the D. Callan comment on A001147 from Oct 26 2006. - Wolfdieter Lang, Sep 14 2007
The asymptotic expansions of the higher order exponential integrals E(x,m,n), see A163931 for information, lead to the Bessel numbers of the first kind in an intriguing way. For the first four values of m these asymptotic expansions lead to the triangles A130534 (m=1), A028421 (m=2), A163932 (m=3) and A163934 (m=4). The o.g.f.s. of the right hand columns of these triangles in their turn lead to the triangles A163936 (m=1), A163937 (m=2), A163938 (m=3) and A163939 (m=4). The row sums of these four triangles lead to A001147, A001147 (minus a(0)), A001879 and A000457 which are the first four right hand columns of A001498. We checked this phenomenon for a few more values of m and found that this pattern persists: m = 5 leads to A001880, m=6 to A001881, m=7 to A038121 and m=8 to A130563 which are the next four right hand columns of A001498. So one by one all columns of the triangle of coefficients of Bessel polynomials appear. - Johannes W. Meijer, Oct 07 2009
a(n,k) also appear as coefficients of (n+1)st degree of the differential operator D:=1/t d/dt, namely D^{n+1}= Sum_{k=0..n} a(n,k) (-1)^{n-k} t^{1-(n+k)} (d^{n+1-k}/dt^{n+1-k}. - Leonid Bedratyuk, Aug 06 2010
a(n-1,k) are the coefficients when expanding (xI)^n in terms of powers of I. Let I(f)(x) := Integral_{a..x} f(t) dt, and (xI)^n := x Integral_{a..x} [ x_{n-1} Integral_{a..x_{n-1}} [ x_{n-2} Integral_{a..x_{n-2}} ... [ x_1 Integral_{a..x_1} f(t) dt ] dx_1 ] .. dx_{n-2} ] dx_{n-1}. Then: (xI)^n = Sum_{k=0..n-1} (-1)^k * a(n-1,k) * x^(n-k) * I^(n+k)(f)(x) where I^(n) denotes iterated integration. - Abdelhay Benmoussa, Apr 11 2025

Examples

			The triangle a(n, k), n >= 0, k = 0..n, begins:
  1
  1  1
  1  3   3
  1  6  15    15
  1 10  45   105    105
  1 15 105   420    945    945
  1 21 210  1260   4725  10395   10395
  1 28 378  3150  17325  62370  135135   135135
  1 36 630  6930  51975 270270  945945  2027025  2027025
  1 45 990 13860 135135 945945 4729725 16216200 34459425 34459425
  ...
And the first few Bessel polynomials are:
  y_0(x) = 1,
  y_1(x) = x + 1,
  y_2(x) = 3*x^2 + 3*x + 1,
  y_3(x) = 15*x^3 + 15*x^2 + 6*x + 1,
  y_4(x) = 105*x^4 + 105*x^3 + 45*x^2 + 10*x + 1,
  y_5(x) = 945*x^5 + 945*x^4 + 420*x^3 + 105*x^2 + 15*x + 1,
  ...
Tree counting: a(2,1)=3 for the unordered forest of m=2 plane increasing trees with n=3 vertices, namely one tree with one vertex (root) and another tree with two vertices (a root and a leaf), labeled increasingly as (1, 23), (2,13) and (3,12). - _Wolfdieter Lang_, Sep 14 2007
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

Crossrefs

Cf. A001497 (same triangle but rows read in reverse order). Other versions of this same triangle are given in A144331, A144299, A111924 and A100861.
Columns from left edge include A000217, A050534.
Columns 1-6 from right edge are A001147, A001879, A000457, A001880, A001881, A038121.
Bessel polynomials evaluated at certain x are A001515 (x=1, row sums), A000806 (x=-1), A001517 (x=2), A002119 (x=-2), A001518 (x=3), A065923 (x=-3), A065919 (x=4). Cf. A043301, A003215.
Cf. A245066 (central terms). A113025 (y_n(2*x)).

Programs

  • Haskell
    a001498 n k = a001498_tabl !! n !! k
    a001498_row n = a001498_tabl !! n
    a001498_tabl = map reverse a001497_tabl
    -- Reinhard Zumkeller, Jul 11 2014
    
  • Magma
    /* As triangle: */ [[Factorial(n+k)/(2^k*Factorial(n-k)*Factorial(k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Feb 15 2016
  • Maple
    Bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end; # explicit Bessel polynomials
    Bessel := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*Bessel(n-1)+Bessel(n-2); fi; end; # recurrence for Bessel polynomials
    bessel := proc(n,x) add(binomial(n+k,2*k)*(2*k)!*x^k/(k!*2^k),k=0..n); end;
    f := proc(n) option remember; if n <=1 then (1+x)^n else (2*n-1)*x*f(n-1)+f(n-2); fi; end;
    # Alternative:
    T := (n,k) -> pochhammer(n+1,k)*binomial(n,k)/2^k:
    for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, May 11 2018
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
    else (n - k + 1)* T(n, k - 1) + T(n - 1, k) fi fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Oct 02 2023
  • Mathematica
    max=50; Flatten[Table[(n+k)!/(2^k*(n-k)!*k!), {n, 0, Sqrt[2 max]//Ceiling}, {k, 0, n}]][[1 ;; max]] (* Jean-François Alcover, Mar 20 2011 *)
  • PARI
    {T(n,k)=if(k<0||k>n, 0, binomial(n, k)*(n+k)!/2^k/n!)} /* Michael Somos, Oct 03 2006 */
    
  • PARI
    A001497_ser(N,t='t) = {
      my(x='x+O('x^(N+2)));
      serlaplace(deriv(exp((1-sqrt(1-2*t*x))/t),'x));
    };
    concat(apply(Vecrev, Vec(A001497_ser(9)))) \\ Gheorghe Coserea, Dec 27 2017
    

Formula

a(n, k) = (n+k)!/(2^k*(n-k)!*k!) (see Grosswald and Riordan). - Ralf Stephan, Apr 20 2004
a(n, 0)=1; a(0, k)=0, k > 0; a(n, k) = a(n-1, k) + (n-k+1) * a(n, k-1) = a(n-1, k) + (n+k-1) * a(n-1, k-1). - Len Smiley
a(n, m) = A001497(n, n-m) = A001147(m)*binomial(n+m, 2*m) for n >= m >= 0, otherwise 0.
G.f. for m-th column: (A001147(m)*x^m)/(1-x)^(2*m+1), m >= 0, where A001147(m) = double factorials (from explicit a(n, m) form).
Row polynomials y_n(x) are given by D^(n+1)(exp(t)) evaluated at t = 0, where D is the operator 1/(1-t*x)*d/dt. - Peter Bala, Nov 25 2011
G.f.: conjecture: T(0)/(1-x), where T(k) = 1 - x*y*(k+1)/(x*y*(k+1) - (1-x)^2/T(k+1)); (continued fraction). - Sergei N. Gladkovskii, Nov 13 2013
Recurrence from Grosswald, p. 18, eq. (5), for the row polynomials: y_n(x) = (2*n-1)*x*y_{n-1} + y_{n-2}(x), y_{-1}(x) = 1 = y_{0} = 1, n >= 1. This becomes, for n >= 0, k = 0..n: a(n, k) = 0 for n < k (zeros not shown in the triangle), a(n, -1) = 0, a(0, 0) = 1 = a(1, 0) and otherwise a(n, k) = (2*n-1)*a(n-1, k-1) + a(n-2, k). Compare with the above given recurrences. - Wolfdieter Lang, May 11 2018
T(n, k) = Pochhammer(n+1,k)*binomial(n,k)/2^k = A113025(n,k)/2^k. - Peter Luschny, May 11 2018
a(n, k) = Sum_{i=0..min(n-1, k)} (n-i)(k-i) * a(n-1, i) where x(n) = x*(x-1)*...*(x-n+1) is the falling factorial, this equality follows directly from the operational formula we wrote in Apr 11 2025.- Abdelhay Benmoussa, May 18 2025

A143411 Square array, read by antidiagonals: form the Euler-Seidel matrix for the sequence {2^k*k!} and then divide column k by 2^k*k!.

Original entry on oeis.org

1, 3, 1, 13, 5, 1, 79, 33, 7, 1, 633, 277, 61, 9, 1, 6331, 2849, 643, 97, 11, 1, 75973, 34821, 7993, 1225, 141, 13, 1, 1063623, 493825, 114751, 17793, 2071, 193, 15, 1, 17017969, 7977173, 1870837, 292681, 34361, 3229, 253, 17, 1
Offset: 0

Views

Author

Peter Bala, Aug 19 2008

Keywords

Comments

This table is closely connected to the constant 1/sqrt(e). The row, column and diagonal entries of this table occur in series acceleration formulas for 1/sqrt(e). For a similar table based on the differences of the sequence {2^k*k!} and related to the constant sqrt(e), see A143410. For other arrays similarly related to constants see A086764 (for e), A143409 (for 1/e), A008288 (for log(2)), A108625 (for zeta(2)) and A143007 (for zeta(3)).

Examples

			The Euler-Seidel matrix for the sequence {2^k*k!} begins
  ========================================
  n\k|     0     1     2     3     4     5
  ========================================
  0  |     1     2     8    48   384  3840
  1  |     3    10    56   432  4224
  2  |    13    66   488  4656
  3  |    79   554  5144
  4  |   633  5698
  5  |  6331
  ...
.
  Dividing the k-th column by 2^k*k! gives
  ========================================
  n\k|     0     1     2     3     4     5
  ========================================
  0  |     1     1     1     1     1     1
  1  |     3     5     7     9    11
  2  |    13    33    61    97
  3  |    79   277   643
  4  |   633  2849
  5  |  6331
  ...
		

Crossrefs

Programs

  • Magma
    A:= func< n,k | (&+[Binomial(n,j)*Factorial(k+j)*2^j/Factorial(k): j in [0..n]]) >; // Array
    A143411:= func< n,k | A(n-k,k) >; // antidiagonal triangle
    [A143411(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 05 2023
    
  • Maple
    with combinat: T := (n, k) -> 1/k!*add(2^j*binomial(n,j)*(k+j)!, j = 0..n): for n from 0 to 9 do seq(T(n, k), k = 0..9) end do;
  • Mathematica
    A[n_, k_]:= (1/k!)*Sum[Binomial[n,j]*(k+j)!*2^j, {j,0,n}]; (* array *)
    A143411[n_, k_]:= A[n-k,k]; (* antidiagonals *)
    Table[A143411[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 05 2023 *)
  • SageMath
    def A(n,k): return sum(binomial(n,j)*factorial(j+k)*2^j/factorial(k) for j in range(n+1)) # array
    def A143411(n,k): return A(n-k,k) # antidiagonal triangle
    flatten([[A143411(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Oct 05 2023

Formula

T(n,k) = (1/k!)*Sum_{j = 0..n} 2^j*binomial(n,j)*(k+j)!.
Relation with Poisson-Charlier polynomials c_n(x,a):
T(n,k) = (-1)^n*c_n(-(k+1),1/2).
Recurrence relations:
T(n,k) = 2*n*T(n-1,k) + T(n,k-1);
T(n,k) = 2*(n+k)*T(n-1,k) + T(n-1,k-1);
T(n,k) = 2*(k+1)*T(n-1,k+1) + T(n-1,k).
Recurrence for row n entries: 2*k*T(n,k) = (2*n+2*k-1)*T(n,k-1) + T(n,k-2).
E.g.f. for column k: exp(y)/(1 - 2*y)^(k+1).
E.g.f. for array: exp(y)/(1 - x - 2*y) = (1 + x + x^2 + ...) + (3 + 5*x + 7*x^2 + ...)*y + (13 + 37*x + 61*x^2 + ...)*y^2/2! + ... .
Series acceleration formulas for 1/sqrt(e):
Row n: 1/sqrt(e) = 2^n*n!*(1/T(n,0) - 1/(2*1!*T(n,0)*T(n,1)) + 1/(2^2*2!*T(n,1)*T(n,2)) - 1/(2^3*3!*T(n,2)*T(n,3)) + ...). For example, row 3 gives 1/sqrt(e) = 48*(1/79 - 1/(2*79*277) + 1/(8*277*643) - 1/(48*643*1225) + ...).
Column k: 1/sqrt(e) = (1 - (1/2)/1! + (1/2)^2/2! - ... + (-1/2)^k/k!) + (-1)^(k+1)/(2^k*k!)*( Sum_{n = 0..inf} 2^n*n!/(T(n,k)*T(n+1,k)) ). For example, column 3 gives 1/sqrt(e) = 29/48 + 1/48*( 1/(1*9) + 2/(9*97) + 8/(97*1225) + 48/(1225*17793) + ... ).
Main diagonal: 1/sqrt(e) = 1 - 2*( 1/(1*5) - 1/(5*61) + 1/(61*1225) - ... ). See A065919.

A143412 Main diagonal of A143410.

Original entry on oeis.org

1, 3, 37, 743, 20841, 751019, 33065677, 1720166223, 103243039057, 7022246822099, 533794001518581, 44845718374382903, 4126339884444745657, 412678834162848948603, 44573440429472131194781, 5170931768652930067543199, 641240112753392800506551457, 84648865815216502596932335523
Offset: 0

Views

Author

Peter Bala, Aug 14 2008

Keywords

Comments

The sequence of convergents of the continued fraction expansion sqrt(e) = 1 + 2/(3 + 1/(12 + 1/(20 + 1/(28 + 1/(36 + ... ))))) begins [1/1, 5/3, 61/37, 1225/743, ...]. The partial denominators are this sequence; the numerators are A065919. - Peter Bala, Jan 02 2020

Crossrefs

Programs

  • Magma
    I:=[1,3]; [n le 2 select I[n] else 4*(2*n -3)*Self(n - 1) + Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jan 03 2016
  • Maple
    a := n -> (-1)^n*add ((-2)^k*(n+k)!/((n-k)!*k!),k = 0..n): seq(a(n),n = 0..16);
    seq(simplify(2^n*KummerU(-n,-2*n,-1/2)), n=0..17); # Peter Luschny, May 10 2022
  • Mathematica
    RecurrenceTable[{ a[n + 2] == 4*(2 n + 3)*a[n + 1] + a[n], a[0] == 1, a[1] == 3}, a, {n, 0, 20}] (* G. C. Greubel, Jan 03 2016 *)
  • PARI
    a(n) = (-1)^n*sum(k=0,n, (-2)^k*(n+k)!/((n-k)!*k!) ); \\ Joerg Arndt, May 17 2013
    

Formula

a(n) = (-1)^n*Sum_{k = 0..n} (-2)^k*(n+k)!/((n-k)!*k!) = (-1)^n*y_n(-4), where y_n(x) denotes the n-th Bessel polynomial.
Recurrence relation: a(0) = 1, a(1) = 3, a(n) = 4*(2*n-1)*a(n-1) + a(n-2) for n >= 2. Sequence A065919 satisfies the same recurrence relation.
sqrt(e) = 1 + 2*Sum_{n >= 0} (-1)^n/(a(n)*a(n+1)) = 1 + 2*(1/(1*3) - 1/(3*37) + 1/(37*743) - ...) (see A019774).
G.f.: 1/Q(0), where Q(k)= 1 + x - 4*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) = (-1)^n * hypergeom([-n,n+1],[],2). - Robert Israel, Jan 03 2016
a(n) ~ 2^(3*n + 1/2) * n^n / exp(n + 1/4). - Vaclav Kotesovec, Jan 02 2020
a(n) is the expectation of U_{2n}(X) where X is a standard Gaussian random variable and U_n is the n-th Chebyshev polynomial of second kind (conjectured). - Benjamin Dadoun, Dec 16 2020
a(n) = 2^n*KummerU(-n, -2*n, -1/2). - Peter Luschny, May 10 2022

A078736 Numerators of convergents to sqrt(e).

Original entry on oeis.org

1, 2, 3, 5, 28, 33, 61, 582, 643, 1225, 16568, 17793, 34361, 601930, 636291, 1238221, 26638932, 27877153, 54516085, 1390779278, 1445295363, 2836074641, 83691459952, 86527534593, 170218994545, 5703754354578, 5873973349123
Offset: 1

Views

Author

Benoit Cloitre, Dec 20 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[E],30]] (* Harvey P. Dale, Sep 23 2011 *)
  • PARI
    a(n)=component(component(contfracpnqn(contfrac(exp(1/2),n)),1),1)

Formula

Let y(n, x)=sum(k=0, n, (n+k)!*(x/2)^k/((n-k)!*k!)) then : a(3*n)=(1/2)*(y(n, 4)+y(n-1, 4)); a(3*n+1)=y(n, 4); a(3*n+2)=(1/2)*(y(n+1, 4)-y(n, 4))

A078737 Denominators of convergents to sqrt(e).

Original entry on oeis.org

1, 1, 2, 3, 17, 20, 37, 353, 390, 743, 10049, 10792, 20841, 365089, 385930, 751019, 16157329, 16908348, 33065677, 843550273, 876615950, 1720166223, 50761436417, 52481602640, 103243039057, 3459501891521, 3562744930578, 7022246822099
Offset: 1

Views

Author

Benoit Cloitre, Dec 20 2002

Keywords

Crossrefs

Programs

  • PARI
    a(n)=component(component(contfracpnqn(contfrac(exp(1/2),n)),1),2)

Formula

Let y(n, x)=sum(k=0, n, (n+k)!*(x/2)^k/((n-k)!*k!)) then : a(3*n-1)=(1/2)*(|y(n, -4)|- |y(n-1, -4)|); a(3*n)=(1/2)*(|y(n, -4)|+ |y(n-1, -4)|); a(3*n+1)=|y(n, -4)|
Showing 1-5 of 5 results.