cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A078736 Numerators of convergents to sqrt(e).

Original entry on oeis.org

1, 2, 3, 5, 28, 33, 61, 582, 643, 1225, 16568, 17793, 34361, 601930, 636291, 1238221, 26638932, 27877153, 54516085, 1390779278, 1445295363, 2836074641, 83691459952, 86527534593, 170218994545, 5703754354578, 5873973349123
Offset: 1

Views

Author

Benoit Cloitre, Dec 20 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Convergents[Sqrt[E],30]] (* Harvey P. Dale, Sep 23 2011 *)
  • PARI
    a(n)=component(component(contfracpnqn(contfrac(exp(1/2),n)),1),1)

Formula

Let y(n, x)=sum(k=0, n, (n+k)!*(x/2)^k/((n-k)!*k!)) then : a(3*n)=(1/2)*(y(n, 4)+y(n-1, 4)); a(3*n+1)=y(n, 4); a(3*n+2)=(1/2)*(y(n+1, 4)-y(n, 4))
Showing 1-1 of 1 results.