cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A105749 Number of ways to use the elements of {1,...,k}, 0 <= k <= 2n, once each to form a sequence of n sets, each having 1 or 2 elements.

Original entry on oeis.org

1, 2, 14, 222, 6384, 291720, 19445040, 1781750880, 214899027840, 33007837322880, 6290830003852800, 1456812592995513600, 402910665227270323200, 131173228963370155161600, 49656810289225281849907200, 21628258853895305337293568000, 10739534026001485514941587456000
Offset: 0

Views

Author

Robert A. Proctor (www.math.unc.edu/Faculty/rap/), Apr 18 2005

Keywords

Comments

Equivalently, number of sequences of n labeled items such that each item occurs just once or twice. - David Applegate, Dec 08 2008
Also, number of assembly trees for a certain star graph, see Vince-Bona, Theorem 4. - N. J. A. Sloane, Oct 08 2012

Examples

			a(2) = 14 = |{ ({1},{2}), ({2},{1}), ({1},{2,3}), ({2,3},{1}), ({2},{1,3}), ({1,3},{2}), ({3},{1,2}), ({1,2},{3}), ({1,2},{3,4}), ({3,4},{1,2}), ({1,3},{2,4}), ({2,4},{1,3}), ({1,4},{2,3}), ({2,3},{1,4}) }|.
		

Crossrefs

Replace "sets" by "lists": A099022.
Column n=2 of A181731.

Programs

  • Magma
    [(&+[Binomial(n,j)*Factorial(n+j)/2^j: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Sep 26 2023
    
  • Maple
    a:= n-> add(binomial(n, k)*(n+k)!/2^k, k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 21 2012
  • Mathematica
    f[n_]:= Sum[Binomial[n,k]*(n+k)!/2^k, {k,0,n}]; Table[f[n], {n,0,20}]
  • SageMath
    [sum(binomial(n,j)*factorial(n+j)//2^j for j in range(n+1)) for n in range(31)] # G. C. Greubel, Sep 26 2023

Formula

a(n) = Sum_{k=0..n} C(n,k) * (n+k)! / 2^k.
a(n) = n! * A001515(n).
A003011(n) = Sum_{k=0..n} C(n, k)*a(k).
a(n) = Gamma(n+1)*Hypergeometric2F0([-n, n+1], [], -1/2). - Peter Luschny, Jul 29 2014
a(n) ~ sqrt(Pi) * 2^(n + 1) * n^(2*n + 1/2) / exp(2*n - 1). - Vaclav Kotesovec, Nov 27 2017
From G. C. Greubel, Sep 26 2023: (Start)
a(n) = n*(2*n-1)*a(n-1) + n*(n-1)*a(n-2).
a(n) = e * sqrt(2/Pi) * n! * BesselK(n+1/2, 1).
a(n) = ((2*n)!/2^n) * Hypergeometric1F1(-n, -2*n, 2).
G.f.: (-2/x) * Integrate_{t=0..oo} exp(-t)/((t+1)^2 - 1 - 2/x) dt.
G.f.: e*( exp(-sqrt(1 + 2/x)) * ExpIntegralEi(-1 + sqrt(1 + 2/x)) - exp(sqrt(1 + 2/x)) * ExpIntegralEi(-1 - sqrt(1 + 2/x)) )/sqrt(x^2 + 2*x).
E.g.f.: ((1-x)/x) * Hypergeometric1F1(1, 3/2, -(1-x)^2/(2*x)).
E.g.f.: (1/(1-x))*Hypergeometric2F0([1, 1/2]; []; 2*x/(1-x)^2). (End)

Extensions

More terms from Robert G. Wilson v, Apr 23 2005

A308292 A(n,k) = Sum_{i_1=0..n} Sum_{i_2=0..n} ... Sum_{i_k=0..n} multinomial(i_1 + i_2 + ... + i_k; i_1, i_2, ..., i_k), square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 16, 19, 4, 1, 1, 65, 271, 69, 5, 1, 1, 326, 7365, 5248, 251, 6, 1, 1, 1957, 326011, 1107697, 110251, 923, 7, 1, 1, 13700, 21295783, 492911196, 191448941, 2435200, 3431, 8, 1, 1, 109601, 1924223799, 396643610629, 904434761801, 35899051101, 55621567, 12869, 9, 1
Offset: 0

Views

Author

Seiichi Manyama, May 19 2019

Keywords

Comments

For r > 1, row r is asymptotic to sqrt(2*Pi) * (r*n)^(r*n + 1/2) / ((r!)^n * exp(r*n-1)). - Vaclav Kotesovec, May 24 2020

Examples

			For (n,k) = (3,2), (Sum_{i=0..3} x^i/i!)^2 = (1 + x + x^2/2 + x^3/6)^2 = 1 + 2*x + 4*x^2/2 + 8*x^3/6 + 14*x^4/24 + 20*x^5/120 + 20*x^6/720. So A(3,2) = 1 + 2 + 4 + 8 + 14 + 20 + 20 = 69.
Square array begins:
   1, 1,    1,        1,             1,                   1, ...
   1, 2,    5,       16,            65,                 326, ...
   1, 3,   19,      271,          7365,              326011, ...
   1, 4,   69,     5248,       1107697,           492911196, ...
   1, 5,  251,   110251,     191448941,        904434761801, ...
   1, 6,  923,  2435200,   35899051101,    1856296498826906, ...
   1, 7, 3431, 55621567, 7101534312685, 4098746255797339511, ...
		

Crossrefs

Columns k=0..4 give A000012, A000027(n+1), A030662(n+1), A144660, A144661.
Rows n=0..4 give A000012, A000522, A003011, A308294, A308295.
Main diagonal gives A274762.
Cf. A144510.

Formula

A(n,k) = Sum_{i=0..k*n} b(i) where Sum_{i=0..k*n} b(i) * x^i/i! = (Sum_{i=0..n} x^i/i!)^k.

A105748 Number of ways to use the elements of {1,..,k}, 0<=k<=2n, once each to form a collection of n (possibly empty) sets, each with at most 2 elements.

Original entry on oeis.org

1, 3, 10, 47, 313, 2744, 29751, 383273, 5713110, 96673861, 1830257967, 38326484944, 879473289521, 21944639630923, 591545277653354, 17131028946645255, 530424623323416617, 17485652721425863464, 611431929749388274471, 22604399407882099928577
Offset: 0

Views

Author

Robert A. Proctor (www.math.unc.edu/Faculty/rap/), Apr 18 2005

Keywords

Examples

			a(2) = 10 = |{ {{},{}}, {{},{1}}, {{},{1,2}}, {{1},{2}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}} }|.
		

Crossrefs

First differences: A001515.
Replacing "collection" by "sequence" gives A003011.
Replacing "sets" by "lists" gives A105747.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 3, 10][n+1],
          2*n*a(n-1)-(2*n-2)*a(n-2)-a(n-3))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 11 2015
  • Mathematica
    Sum[(k+i)!/i!/(k-i)!/2^i, {k, 0, n}, {i, 0, k}]
    (* Second program: *)
    a[n_] := E*Sqrt[2/Pi]*Sum[BesselK[k + 1/2, 1], {k, 0, n}]; Table[a[n] // Round, {n, 0, 25}] (* Jean-François Alcover, Jul 15 2017 *)
  • PARI
    A105748(n) = sum(k=0,n,sum(i=0,k, binomial(k+i,k-i)*binomial(2*i,i)*i!>>i))  \\ M. F. Hasler, Oct 09 2012

Formula

a(n) = Sum_{0<=i<=k<=n} (k+i)!/i!/(k-i)!/2^i.
G.f.: 1/U(0) where U(k)= 1 - 3*x + x^2 - x*4*k - x^2*(2*k+1)*(2*k+2)/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 06 2012
G.f.: 1/(1-x)/Q(0), where Q(k)= 1 - x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
a(n) = 2*n*a(n-1) -(2*n-2)*a(n-2) -a(n-3) for n>2. - Alois P. Heinz, Mar 11 2015
a(n) ~ 2^(n + 1/2) * n^n / exp(n-1). - Vaclav Kotesovec, May 05 2024

A082765 Trinomial transform of the factorial numbers (A000142).

Original entry on oeis.org

1, 4, 45, 1282, 70177, 6239016, 817234189, 147950506390, 35370826189857, 10791515504716012, 4091225768720823181, 1886585105032464025674, 1039774852573506696192385, 674970732343624159361034832
Offset: 0

Views

Author

Emanuele Munarini, May 21 2003

Keywords

Comments

Number of ways to use the elements of {1,..,k}, 0<=k<=2n, once each to form a sequence of n (possibly empty) lists, each of length at most 2. - Bob Proctor, Apr 18 2005

Crossrefs

a(n) = Sum[C(n, k)*A099022(k), 0<=k<=n]
Replace "sequence" by "collection" in comment: A105747.
Replace "lists" by "sets" in comment: A003011.

Formula

a(n) = Sum[ Trinomial[n, k] k!, {k, 0, 2n} ] where Trinomial[n, k] = trinomial coefficients (A027907)
Integral_{x=0..infinity} (x^2+x+1)^n*exp(-x) dx - Gerald McGarvey, Oct 14 2006

A089975 Array read by ascending antidiagonals: T(n,k) is the number of n-letter words from a k-letter alphabet such that no letter appears more than twice.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 4, 3, 1, 0, 0, 6, 9, 4, 1, 0, 0, 6, 24, 16, 5, 1, 0, 0, 0, 54, 60, 25, 6, 1, 0, 0, 0, 90, 204, 120, 36, 7, 1, 0, 0, 0, 90, 600, 540, 210, 49, 8, 1, 0, 0, 0, 0, 1440, 2220, 1170, 336, 64, 9, 1, 0, 0, 0, 0, 2520, 8100, 6120, 2226, 504, 81, 10, 1
Offset: 0

Views

Author

Paul Boddington, Nov 17 2003

Keywords

Examples

			Array begins:
  1, 1, 1,  1,    1,     1,      1,      1,       1,       1,       1, ...
  0, 1, 2,  3,    4,     5,      6,      7,       8,       9,      10, ...
  0, 1, 4,  9,   16,    25,     36,     49,      64,      81,     100, ...
  0, 0, 6, 24,   60,   120,    210,    336,     504,     720,     990, ...
  0, 0, 6, 54,  204,   540,   1170,   2226,    3864,    6264,    9630, ...
  0, 0, 0, 90,  600,  2220,   6120,  14070,   28560,   52920,   91440, ...
  0, 0, 0, 90, 1440,  8100,  29520,  83790,  201600,  430920,  842400, ...
  0, 0, 0,  0, 2520, 25200, 128520, 463680, 1345680, 3356640, 7484400, ...
  ... - _Robert FERREOL_, Nov 03 2017
		

Crossrefs

T(1, k) = A001477(k); T(2, k) = A000290(k); T(3, k) = A007531(k); T(n, n) = A012244(n); T(n, n+1) = A036774(n); T(n, n+2) = A003692(n+1); T(2*n, n) = A000680(n); sum(T(n, k), n=0..2*k) = A003011(k); sum(T(r, n-r), r=0..n) = A089976(n).
See A141765 for an irregular triangle version : T(n,k)=A141765(k,n) for n <= 2k.

Programs

  • Maple
    T:=(n,k)->add(n!*k!/(n-2*i)!/i!/(k-n+i)!/2^i,i=max(0,n-k)..n/2):
    or
    T:=proc(n,k) option remember :if n=0 then 1 elif n=1 then k elif k=0 then 0 else T(n, k-1)+n*T(n-1, k-1)+binomial(n,2)*T(n-2, k-1) fi end:
    or
    T:=(n,k)-> n!*coeff((1 + x + x^2/2)^k, x,n):
    seq(seq(T(n-k,k),k=0..n),n=0..20);
    # Robert FERREOL, Nov 07 2017
  • Mathematica
    T[n_, k_] := Sum[n!*k!/(2^i*(n - 2 i)!*(k - n + i)!*i!), {i, Max[0, n - k], Floor[n/2]}];
    Table[T[n-k , k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 05 2017, after Robert FERREOL *)
  • Python
    from math import factorial as f
    def T(n,k):
        return sum(f(n)*f(k)//f(n-2*i)//f(i)//f(k-n+i)//2**i for i in range(max(0,n-k),n//2+1))
    [T(n-k,k) for n in range(21) for k in range(n+1)]
    # Robert FERREOL, Oct 17 2017

Formula

T(n, k) = T(n, k-1) + n*T(n-1, k-1) + binomial(n, 2)*T(n-2, k-1) for n >= 2 and k >= 1.
T(n, k) = Sum_{i=max(0,n-k)..floor(n/2)} n!*k!/(2^i*(n-2*i)!*(k-n+i)!*i!). - Robert FERREOL, Oct 30 2017
T(n,k) = (-1)^n*n!*2^(-n/2)*GegenbauerC(n, -k, 1/sqrt(2)) for k >= n. - Robert Israel, Nov 08 2017
G.f.: Sum({n>=0} T(n,k)x^n)=n!(1 + x + x^2/2)^k. See Walsh link. - Robert FERREOL, Nov 14 2017

A141765 Triangle T, read by rows, such that row n equals column 0 of matrix power M^n where M is a triangular matrix defined by M(k+m,k) = binomial(k+m,k) for m=0..2 and zeros elsewhere. Width-2-restricted finite functions.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 4, 6, 6, 1, 3, 9, 24, 54, 90, 90, 1, 4, 16, 60, 204, 600, 1440, 2520, 2520, 1, 5, 25, 120, 540, 2220, 8100, 25200, 63000, 113400, 113400, 1, 6, 36, 210, 1170, 6120, 29520, 128520, 491400, 1587600, 4082400, 7484400, 7484400, 1, 7, 49, 336, 2226
Offset: 0

Views

Author

Paul D. Hanna, Jul 28 2008

Keywords

Comments

T(k,n) is the number of distinct ways in which n labeled objects can be distributed in k labeled urns allowing at most 2 objects to fall in each urn. - N-E. Fahssi, Apr 22 2009
T(k,n) is the number of functions f:[n]->[k] such that the preimage set under f of any element of [k] has size 2 or less. - Dennis P. Walsh, Feb 15 2011

Examples

			This triangle T begins:
1;
1, 1, 1;
1, 2, 4, 6, 6;
1, 3, 9, 24, 54, 90, 90;
1, 4, 16, 60, 204, 600, 1440, 2520, 2520;
1, 5, 25, 120, 540, 2220, 8100, 25200, 63000, 113400, 113400;
1, 6, 36, 210, 1170, 6120, 29520, 128520, 491400, 1587600, 4082400, 7484400, 7484400;
1, 7, 49, 336, 2226, 14070, 83790, 463680, 2346120, 10636920, 42071400, 139708800, 366735600, 681080400, 681080400,
1, 8, 64, 504, 3864, 28560, 201600, 1345680, 8401680, 48444480, 254016000, 1187524800, 4819953600, 16345929600, 43589145600, 81729648000, 81729648000,
1, 9, 81, 720, 6264, 52920, 430920, 3356640, 24811920, 172504080, 1116536400, 6646147200, 35835307200, 171632260800, 711047937600, 2451889440000, 6620101488000, 12504636144000, 12504636144000,
...
Rows 6 and 8 appear in Park (2015). - _N. J. A. Sloane_, Jan 31 2016
Let M be the triangular matrix that begins:
  1;
  1,  1;
  1,  2,  1;
  0,  3,  3,  1;
  0,  0,  6,  4,  1;
  0,  0,  0, 10,  5,  1; ...
where M(k+m,k) = C(k+m,k) for m=0,1,2 and zeros elsewhere.
Illustrate that row n of T = column 0 of M^n for n >= 0 as follows.
The matrix square M^2 begins:
   1;
   2,  1;
   4,  4,  1;
   6, 12,  6,  1;
   6, 24, 24,  8,  1;
   0, 30, 60, 40, 10,  1; ...
with column 0 of M^2 forming row 2 of T.
The matrix cube M^3 begins:
   1;
   3,   1;
   9,   6,   1;
  24,  27,   9,   1;
  54,  96,  54,  12,   1;
  90, 270, 240,  90,  15,   1;
  90, 540, 810, 480, 135,  18,   1; ...
with column 0 of M^3 forming row 3 of T.
T(2,3)=6 because there are 6 ways to lodge 3 distinguishable balls, labeled by numbers 1,2 and 3, in 2 distinguishable boxes, each of which can hold at most 2 balls. - _N-E. Fahssi_, Apr 22 2009
T(5,8)=63000 because there are 63000 ways to assign 8 students to a dorm room when there are 5 different two-bed dorm rooms that are available. (See link for details of the count.) - _Dennis P. Walsh_, Feb 15 2011
		

Crossrefs

Cf. A003011 (row sums), A000680 (right border); diagonals: A012244, A036774, A003692.

Programs

  • Maple
    seq(seq(n!*sum(binomial(k,j)*binomial(j,n-j)*2^(j-n),j=ceil(n/2)..k),n=0..2*k),k=1..10); # Dennis P. Walsh, Feb 15 2011
  • Mathematica
    T[k_, n_] := If[n == 0, 1, n! Coefficient[(1 + x + x^2/2)^k, x^n]]; TableForm[Table[T[k, n], {k, 0, 10}, {n, 0, 2 k}]] (* N-E. Fahssi, Apr 22 2009 *)
  • PARI
    {T(n,k)=local(M=matrix(n+1,n+1,n,k,if(n>=k,if(n-k<=2,binomial(n-1,k-1))))); if(k>2*n,0,(M^n)[k+1,1])}

Formula

T(k,n) = n!*Sum_{i=ceiling(n/2)..k} binomial(k,i)*binomial(i,n-i)*2^(i-n). - Dennis P. Walsh, Feb 15 2011
T(n,2*n) = (2n)!/2^n; thus the rightmost border of T equals A000680.
Main diagonal (central terms) equals A012244.
Other diagonals include A036774 and A003692.
Row sums of triangle T equals A003011, the number of permutations of up to n kinds of objects, where each kind of object can occur at most two times.
T(k,n) = n![x^n](1+x+x^2/2)^k. Double e.g.f.: Sum_{k,n} T(k,n)*(z^k/k!)*(x^n/n!) = exp(z(1+x+x^2/2)). - N-E. Fahssi, Apr 22 2009
T(j+k,n) = Sum_{i=0..n} binomial(n,i)*T(j,i)*T(k,n-i). - Dennis P. Walsh, Feb 15 2011
Showing 1-6 of 6 results.