cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A089976 Antidiagonal sums of array A089975.

Original entry on oeis.org

1, 1, 2, 4, 8, 20, 52, 146, 458, 1498, 5240, 19562, 76006, 311258, 1334108, 5931250, 27492122, 132096626, 655783888, 3368747018, 17837850110, 97228103482, 545514383396, 3142793126018, 18578114240578, 112620106745570, 698987455899992, 4439420959115866, 28832596784976998, 191284437539842538
Offset: 0

Views

Author

Paul Boddington, Nov 17 2003

Keywords

Crossrefs

Cf. A089975.

Programs

  • PARI
    T(n, k) = sum(i=max(0,n-k), floor(n/2), n!*k!/(2^i*(n-2*i)!*(k-n+i)!*i!)); \\ A089975
    a(n) = sum(i=0, n, T(i, n-i)); \\ Michel Marcus, Mar 21 2023

Extensions

Name edited and more terms from Michel Marcus, Mar 21 2023

A012244 a(n+2) = (2n+3)*a(n+1) + (n+1)^2*a(n), a(0) = 1, a(1) = 1.

Original entry on oeis.org

1, 1, 4, 24, 204, 2220, 29520, 463680, 8401680, 172504080, 3958113600, 100370793600, 2787459998400, 84139894238400, 2742857884166400, 96034297911552000, 3594206259195552000, 143193586818810528000, 6050501147565883008000, 270263264589232282368000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of n-letter words from an n-letter alphabet such that no letter appears more than twice. - Paul Boddington, Nov 17 2003

Crossrefs

Programs

  • Maple
    f := proc(n) option remember; if n <= 1 then 1 else (2*n-1)*f(n-1) +(n-1)^2*f(n-2); fi; end;
  • Mathematica
    Range[0,20]! CoefficientList[Series[1/(1-2x-x^2)^(1/2), {x,0,20}], x]  (* Geoffrey Critzer, Dec 07 2011 *)
  • PARI
    {a(n)=local(X=x+x^2*O(x^n));(n+1)!*polcoeff(serreverse(cos(X)+sin(X)-1),n+1)} \\ Paul D. Hanna, Aug 08 2012

Formula

E.g.f.: A(x) = (1 - 2*x - x^2)^(-1/2). - Paul Boddington, Nov 17 2003
a(n) = n!/2^n*A006139(n) = n!*Sum_{k=floor(n/2)..n} 2^(k-n)*C(n, k)*C(k, n-k). Sum_{n>=0} a(n)*x^n/n!^2 = exp(x)*BesselI(0, sqrt(2)*x). a(n) is the central coefficient of n!*(1+x+x^2/2)^n. - Vladeta Jovovic, Mar 22 2004
From Peter Bala, Aug 25 2011: (Start)
The function B(x) := int {t=0..x} A(t), obtained by integrating the generating function A(x), satisfies the autonomous differential equation d/dx(B(x)) = 1/(cos(B(x))-sin(B(x))). Compare with A190392.
Thus B(x), and hence A(x), can be found by inverting the function int {t=0..x} (cos(t)-sin(t)). By applying [Dominici, Theorem 4.1] the result can be expressed as
A(x) = 1 + sum {n>=1} D^n[1/(cos(t)-sin(t))](0)*x^n/n!, where the nested derivative D^n[f](x) of a function f(x) is defined recursively as D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0. Thus a(n) = D^n[1/(cos(t)-sin(t))](0). (End)
E.g.f. at offset 1: Series_Reversion(cos(x) + sin(x) - 1). - Paul D. Hanna, Aug 08 2012
a(n) ~ (1+sqrt(2))^(n+1/2) * n^n / (2^(1/4) * exp(n)). - Vaclav Kotesovec, Feb 18 2017
Showing 1-2 of 2 results.