A054798
Let N(k) and D(k) be the sequences defined in A054765 and A012244; write N(k)* D(k+j ) - N(k+j)*D(k) = (-1)^(k+1)*(k!)^2*P(k) where P(k) is a polynomial in k of degree j-1; sequence gives coefficients of expansion of P(k) in powers of k for j=1,2,3,...
Original entry on oeis.org
1, 2, 3, 5, 20, 19, 12, 90, 214, 160, 29, 348, 1497, 2718, 1744, 70, 1225, 8236, 26453, 40336, 23184, 169, 4056, 39114, 193184, 512813, 689512, 364176, 408, 12852, 167884, 1174860, 4737628, 10955304, 13372072, 6598656, 985, 39400, 669078, 6282340, 35554929, 123708580, 257200712, 290478120, 135484416, 2378, 117711, 2519024, 30514946, 229958030, 1114357079, 3459179856, 6602445344, 6991966752, 3108695040
Offset: 1
For j=1,2,3 the polynomials P(k) are 1, 3 + 2 k, 19 + 20 k + 5 k^2.
1;
2,3,
5,20,19,
12,90,214,160,
29,348,1497,2718,1744,
70,1225,8236,26453,40336,23184,
169,4056,39114,193184,512813,689512,364176,
408,12852,167884,1174860,4737628,10955304,13372072,6598656,
985,39400,669078,6282340,35554929,123708580,257200712,290478120,135484416,
2378,117711,2519024,30514946,229958030,1114357079,3459179856,6602445344,6991966752,3108695040,
A054765
a(n+2) = (2n+3)*a(n+1) + (n+1)^2*a(n), a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 3, 19, 160, 1744, 23184, 364176, 6598656, 135484416, 3108695040, 78831037440, 2189265960960, 66083318415360, 2154235544616960, 75425161203302400, 2822882994841190400, 112463980097804697600
Offset: 0
-
A054765 := proc(n)
option remember;
if n <= 1 then
n;
else
(2*n-1)*procname(n-1)+(n-1)^2*procname(n-2) ;
end if;
end proc: # R. J. Mathar, Jul 13 2013
-
RecurrenceTable[{a[n + 2] == (2*n + 3)*a[n + 1] + (n + 1)^2*a[n],
a[0] == 0, a[1] == 1}, a, {n,0,50}] (* G. C. Greubel, Feb 18 2017 *)
A306800
Square array whose entry A(n,k) is the number of endofunctions on a set of size n with preimage constraint {0,1,...,k}, for n >= 0, k >= 0, read by descending antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 4, 6, 0, 1, 1, 4, 24, 24, 0, 1, 1, 4, 27, 204, 120, 0, 1, 1, 4, 27, 252, 2220, 720, 0, 1, 1, 4, 27, 256, 3020, 29520, 5040, 0, 1, 1, 4, 27, 256, 3120, 44220, 463680, 40320, 0, 1, 1, 4, 27, 256, 3125, 46470, 765030, 8401680, 362880, 0
Offset: 0
Array begins:
1 1 1 1 1 ...
0 1 1 1 1 ...
0 2 4 4 4 ...
0 6 24 27 27 ...
0 24 204 252 256 ...
0 120 2220 3020 3120 ...
0 720 29520 44220 46470 ...
...
Similar array for preimage condition {i>=0 | i!=k}:
A245413.
Number of functions with preimage condition given by the even nonnegative integers:
A209289.
Sum over all k of the number of functions with preimage condition {0,k}:
A231812.
-
b:= proc(n, i, k) option remember; `if`(n=0 and i=0, 1, `if`(i<1, 0,
add(b(n-j, i-1, k)*binomial(n, j), j=0..min(k, n))))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Apr 05 2019
-
b[n_, i_, k_] := b[n, i, k] = If[n==0 && i==0, 1, If[i<1, 0, Sum[b[n-j, i-1, k] Binomial[n, j], {j, 0, Min[k, n]}]]];
A[n_, k_] := b[n, n, k];
Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 29 2019, after Alois P. Heinz *)
-
# print first num_entries entries in column k
import math, sympy; x=sympy.symbols('x')
k=5; num_entries = 64
P=range(k+1); eP=sum([x**d/math.factorial(d) for d in P]); r = [1]; curr_pow = 1
for term in range(1,num_entries):
curr_pow=(curr_pow*eP).expand()
r.append(curr_pow.coeff(x**term)*math.factorial(term))
print(r)
A054766
a(n+2) = (2*n + 3)*a(n+1) + (n + 1)^2*a(n), a(0) = 1, a(1) = 0.
Original entry on oeis.org
1, 0, 1, 5, 44, 476, 6336, 99504, 1803024, 37019664, 849418560, 21539756160, 598194037440, 18056575823040, 588622339549440, 20609136708249600, 771323264354361600, 30729606721005830400, 1298448658633614566400
Offset: 0
-
RecurrenceTable[{a[n+2] == (2*n+3)*a[n+1] + (n+1)^2*a[n], a[0] == 1, a[1] == 0}, a, {n, 0, 25}] (* Vaclav Kotesovec, Feb 18 2017 *)
t={1,0};Do[AppendTo[t,(2(n-2)+3)*t[[-1]]+(n-1)^2*t[[-2]]],{n,2,18}];t (* Indranil Ghosh, Feb 25 2017 *)
Definition expanded by Al Hakanson (hawkuu(AT)gmail.com), Dec 01 2008
A098461
Expansion of E.g.f.: 1/sqrt(1-2*x-3*x^2).
Original entry on oeis.org
1, 1, 6, 42, 456, 6120, 101520, 1980720, 44634240, 1139080320, 32488646400, 1023985670400, 35345049062400, 1325988036172800, 53721616851302400, 2337607853957376000, 108727934847307776000, 5383304681800421376000, 282682783375630589952000
Offset: 0
-
Table[(n!/2^n) Sum[Binomial[n, k] Binomial[2 (n - k), n] 3^k, {k, 0, Floor[n/2]}], {n, 0, 17}] (* Michael De Vlieger, Sep 14 2016 *)
A190392
E.g.f. A(x) satisfies A'(x) = sin(A(x)) + cos(A(x)).
Original entry on oeis.org
1, 1, 0, -4, -12, 4, 240, 1184, -1008, -59504, -401280, 643136, 38584128, 323581504, -848090880, -51666451456, -509739310848, 2004840714496, 123888658698240, 1386061762251776, -7721141999864832, -483475390212586496, -5974101514137292800, 45231727252157947904
Offset: 1
-
A := x ; for i from 1 to 35 do sin(A)+cos(A) ; convert(taylor(%,x=0,25),polynom) ; A := int(%,x) ; print(A) ; end do:
for i from 1 to 25 do printf("%d,", coeftayl(A,x=0,i)*i!) ; end do: # R. J. Mathar, Jun 03 2011
-
terms = 25; A[] = 0; Do[A[x] = Integrate[Sin[A[x]] + Cos[A[x]], x] + O[x]^terms, terms]; CoefficientList[A[x], x]*Range[0, terms-1]! (* Jean-François Alcover, Feb 21 2013, updated Jan 15 2018 *)
-
g(n):=(-1)^floor(n/2)*1/n!;
a(n):=T190015_Solve(n,g);
A089975
Array read by ascending antidiagonals: T(n,k) is the number of n-letter words from a k-letter alphabet such that no letter appears more than twice.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 0, 4, 3, 1, 0, 0, 6, 9, 4, 1, 0, 0, 6, 24, 16, 5, 1, 0, 0, 0, 54, 60, 25, 6, 1, 0, 0, 0, 90, 204, 120, 36, 7, 1, 0, 0, 0, 90, 600, 540, 210, 49, 8, 1, 0, 0, 0, 0, 1440, 2220, 1170, 336, 64, 9, 1, 0, 0, 0, 0, 2520, 8100, 6120, 2226, 504, 81, 10, 1
Offset: 0
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...
0, 0, 6, 24, 60, 120, 210, 336, 504, 720, 990, ...
0, 0, 6, 54, 204, 540, 1170, 2226, 3864, 6264, 9630, ...
0, 0, 0, 90, 600, 2220, 6120, 14070, 28560, 52920, 91440, ...
0, 0, 0, 90, 1440, 8100, 29520, 83790, 201600, 430920, 842400, ...
0, 0, 0, 0, 2520, 25200, 128520, 463680, 1345680, 3356640, 7484400, ...
... - _Robert FERREOL_, Nov 03 2017
T(1, k) =
A001477(k); T(2, k) =
A000290(k); T(3, k) =
A007531(k); T(n, n) =
A012244(n); T(n, n+1) =
A036774(n); T(n, n+2) =
A003692(n+1); T(2*n, n) =
A000680(n); sum(T(n, k), n=0..2*k) =
A003011(k); sum(T(r, n-r), r=0..n) =
A089976(n).
See
A141765 for an irregular triangle version : T(n,k)=
A141765(k,n) for n <= 2k.
-
T:=(n,k)->add(n!*k!/(n-2*i)!/i!/(k-n+i)!/2^i,i=max(0,n-k)..n/2):
or
T:=proc(n,k) option remember :if n=0 then 1 elif n=1 then k elif k=0 then 0 else T(n, k-1)+n*T(n-1, k-1)+binomial(n,2)*T(n-2, k-1) fi end:
or
T:=(n,k)-> n!*coeff((1 + x + x^2/2)^k, x,n):
seq(seq(T(n-k,k),k=0..n),n=0..20);
# Robert FERREOL, Nov 07 2017
-
T[n_, k_] := Sum[n!*k!/(2^i*(n - 2 i)!*(k - n + i)!*i!), {i, Max[0, n - k], Floor[n/2]}];
Table[T[n-k , k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 05 2017, after Robert FERREOL *)
-
from math import factorial as f
def T(n,k):
return sum(f(n)*f(k)//f(n-2*i)//f(i)//f(k-n+i)//2**i for i in range(max(0,n-k),n//2+1))
[T(n-k,k) for n in range(21) for k in range(n+1)]
# Robert FERREOL, Oct 17 2017
A239368
Number of words of length n over the alphabet {0,...,n-1} that avoid the pattern 1111.
Original entry on oeis.org
1, 1, 4, 27, 252, 3020, 44220, 765030, 15269520, 345376080, 8730489600, 243911883600, 7463164262400, 248207881521600, 8915064168410400, 343923449355486000, 14182674669779616000, 622591172035376544000, 28986699477880400256000, 1426677017904959524704000
Offset: 0
-
a:= proc(n) option remember; `if`(n<3, n^n,
((105*n^3-252*n^2+175*n-36) *a(n-1) -2*(n-1)^2 *a(n-2)
+2*(5*n-2)*(n-1)^2*(n-2)^2*a(n-3)) / (4*(2*n-1)*(5*n-7)))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jul 20 2014
A345125
Numerator of 4/(1 + 1^2/(3 + 2^2/(5 + 3^2/(7 + ... + (n-1)^2/(2*n-1) )))).
Original entry on oeis.org
0, 4, 3, 19, 160, 1744, 644, 2529, 183296, 3763456, 4317632, 54743776, 1013549056, 30594128896, 35618973952, 10392576224, 3111643512832, 123968232030208, 48501417558016, 1083228572868608, 4080033616887808, 188557135970304, 3781715948011520
Offset: 0
4/(1 + 1^2/(3 + 2^2/5)) = 19/6. So a(3) = 19.
0, 4, 3, 19/6, 160/51, 1744/555, 644/205, 2529/805, 183296/58345, ...
-
nmax = 25; Join[{0}, Table[4/(1 + ContinuedFractionK[j^2, (2*j + 1), {j, 1, k}]), {k, 0, nmax}] // Numerator] (* Vaclav Kotesovec, Sep 16 2021 *)
-
a(n) = my(x=0); forstep(i=n, 2, -1, x = (i-1)^2/((2*i-1)+x);); if (n, numerator(4/(1+x)), numerator(x)); \\ Michel Marcus, Sep 16 2021
A345259
Denominator of 4/(1 + 1^2/(3 + 2^2/(5 + 3^2/(7 + ... + (n-1)^2/(2*n-1) )))).
Original entry on oeis.org
1, 1, 1, 6, 51, 555, 205, 805, 58345, 1197945, 1374345, 17425485, 322622685, 9738413685, 11337871545, 3308059755, 990466892415, 39460313827935, 15438480702645, 344802363740835, 1298715036217599, 60019600489849, 1203757572990973
Offset: 0
4/(1 + 1^2/(3 + 2^2/5)) = 19/6. So a(3) = 6.
0, 4, 3, 19/6, 160/51, 1744/555, 644/205, 2529/805, 183296/58345, ...
-
nmax = 25; Join[{1}, Table[4/(1 + ContinuedFractionK[j^2, (2*j + 1), {j, 1, k}]), {k, 0, nmax}] // Denominator] (* Vaclav Kotesovec, Sep 16 2021 *)
-
a(n) = my(x=0); forstep(i=n, 2, -1, x = (i-1)^2/((2*i-1)+x);); if (n, denominator(4/(1+x)), denominator(x)); \\ Michel Marcus, Sep 16 2021
Showing 1-10 of 12 results.
Comments