A155728
INVERTi transform of A054765: (1, 3, 19, 160, 1744, ...).
Original entry on oeis.org
1, 2, 14, 121, 1383, 19108, 309708, 5751027, 120357325, 2803145494, 71926499002, 2016492639229, 61338391284387, 2012321446421976, 70833707268623448, 2663117961930477847, 106515148705020928105, 4516063573152118802282, 202328834841437929100838
Offset: 1
We write (1, 3, 19, 160, ...) in reverse: (..., 19, 3, 1), top row.
Bottom row = (1, 2, ...), so that the format for a(3) = 14 becomes: ...3, 1 = A054765: (1, 3, 19, 160, ...). ..., 1, 2 for current format, take dot product = (3*1 + 1*2) = 5, then subtract from next term in A054765, getting (19 - 5) = 14. So a(3) = 14.
Continuing with analogous operations, we get (1, 2, 14, 121, 1383, ...).
A054798
Let N(k) and D(k) be the sequences defined in A054765 and A012244; write N(k)* D(k+j ) - N(k+j)*D(k) = (-1)^(k+1)*(k!)^2*P(k) where P(k) is a polynomial in k of degree j-1; sequence gives coefficients of expansion of P(k) in powers of k for j=1,2,3,...
Original entry on oeis.org
1, 2, 3, 5, 20, 19, 12, 90, 214, 160, 29, 348, 1497, 2718, 1744, 70, 1225, 8236, 26453, 40336, 23184, 169, 4056, 39114, 193184, 512813, 689512, 364176, 408, 12852, 167884, 1174860, 4737628, 10955304, 13372072, 6598656, 985, 39400, 669078, 6282340, 35554929, 123708580, 257200712, 290478120, 135484416, 2378, 117711, 2519024, 30514946, 229958030, 1114357079, 3459179856, 6602445344, 6991966752, 3108695040
Offset: 1
For j=1,2,3 the polynomials P(k) are 1, 3 + 2 k, 19 + 20 k + 5 k^2.
1;
2,3,
5,20,19,
12,90,214,160,
29,348,1497,2718,1744,
70,1225,8236,26453,40336,23184,
169,4056,39114,193184,512813,689512,364176,
408,12852,167884,1174860,4737628,10955304,13372072,6598656,
985,39400,669078,6282340,35554929,123708580,257200712,290478120,135484416,
2378,117711,2519024,30514946,229958030,1114357079,3459179856,6602445344,6991966752,3108695040,
A012244
a(n+2) = (2n+3)*a(n+1) + (n+1)^2*a(n), a(0) = 1, a(1) = 1.
Original entry on oeis.org
1, 1, 4, 24, 204, 2220, 29520, 463680, 8401680, 172504080, 3958113600, 100370793600, 2787459998400, 84139894238400, 2742857884166400, 96034297911552000, 3594206259195552000, 143193586818810528000, 6050501147565883008000, 270263264589232282368000
Offset: 0
-
f := proc(n) option remember; if n <= 1 then 1 else (2*n-1)*f(n-1) +(n-1)^2*f(n-2); fi; end;
-
Range[0,20]! CoefficientList[Series[1/(1-2x-x^2)^(1/2), {x,0,20}], x] (* Geoffrey Critzer, Dec 07 2011 *)
-
{a(n)=local(X=x+x^2*O(x^n));(n+1)!*polcoeff(serreverse(cos(X)+sin(X)-1),n+1)} \\ Paul D. Hanna, Aug 08 2012
A054766
a(n+2) = (2*n + 3)*a(n+1) + (n + 1)^2*a(n), a(0) = 1, a(1) = 0.
Original entry on oeis.org
1, 0, 1, 5, 44, 476, 6336, 99504, 1803024, 37019664, 849418560, 21539756160, 598194037440, 18056575823040, 588622339549440, 20609136708249600, 771323264354361600, 30729606721005830400, 1298448658633614566400
Offset: 0
-
RecurrenceTable[{a[n+2] == (2*n+3)*a[n+1] + (n+1)^2*a[n], a[0] == 1, a[1] == 0}, a, {n, 0, 25}] (* Vaclav Kotesovec, Feb 18 2017 *)
t={1,0};Do[AppendTo[t,(2(n-2)+3)*t[[-1]]+(n-1)^2*t[[-2]]],{n,2,18}];t (* Indranil Ghosh, Feb 25 2017 *)
Definition expanded by Al Hakanson (hawkuu(AT)gmail.com), Dec 01 2008
A155729
Triangle read by rows, M * Q; M = (T(n,k) = A155728(n-k+1)); Q = (A155728 * 0^(n-k)).
Original entry on oeis.org
1, 2, 1, 14, 2, 13, 121, 14, 6, 19, 1383, 121, 42, 38, 160, 19108, 1383, 363, 266, 320, 1744, 19108, 1383, 363, 266, 320, 1744, 309708, 19108, 4149, 2299, 2240, 3488, 23184, 2751027, 309708, 57324, 26277, 19360, 24416, 46368, 364176
Offset: 1
First few rows of the triangle =
1;
2, 1;
14, 2, 3;
121, 14, 6, 19;
1383, 121, 42, 38, 160;
19108, 1383, 363, 266, 320, 1744;
309708, 19108, 4149, 2299, 2240, 3488, 23184;
2751027, 309708, 57324, 26277, 19360, 24416, 46368, 364176;
...
Example: Row 4 = = (121, 14, 6, 19) termwise products of (121, 14, 2, 1) and (1, 1, 3, 19).
A345125
Numerator of 4/(1 + 1^2/(3 + 2^2/(5 + 3^2/(7 + ... + (n-1)^2/(2*n-1) )))).
Original entry on oeis.org
0, 4, 3, 19, 160, 1744, 644, 2529, 183296, 3763456, 4317632, 54743776, 1013549056, 30594128896, 35618973952, 10392576224, 3111643512832, 123968232030208, 48501417558016, 1083228572868608, 4080033616887808, 188557135970304, 3781715948011520
Offset: 0
4/(1 + 1^2/(3 + 2^2/5)) = 19/6. So a(3) = 19.
0, 4, 3, 19/6, 160/51, 1744/555, 644/205, 2529/805, 183296/58345, ...
-
nmax = 25; Join[{0}, Table[4/(1 + ContinuedFractionK[j^2, (2*j + 1), {j, 1, k}]), {k, 0, nmax}] // Numerator] (* Vaclav Kotesovec, Sep 16 2021 *)
-
a(n) = my(x=0); forstep(i=n, 2, -1, x = (i-1)^2/((2*i-1)+x);); if (n, numerator(4/(1+x)), numerator(x)); \\ Michel Marcus, Sep 16 2021
A345259
Denominator of 4/(1 + 1^2/(3 + 2^2/(5 + 3^2/(7 + ... + (n-1)^2/(2*n-1) )))).
Original entry on oeis.org
1, 1, 1, 6, 51, 555, 205, 805, 58345, 1197945, 1374345, 17425485, 322622685, 9738413685, 11337871545, 3308059755, 990466892415, 39460313827935, 15438480702645, 344802363740835, 1298715036217599, 60019600489849, 1203757572990973
Offset: 0
4/(1 + 1^2/(3 + 2^2/5)) = 19/6. So a(3) = 6.
0, 4, 3, 19/6, 160/51, 1744/555, 644/205, 2529/805, 183296/58345, ...
-
nmax = 25; Join[{1}, Table[4/(1 + ContinuedFractionK[j^2, (2*j + 1), {j, 1, k}]), {k, 0, nmax}] // Denominator] (* Vaclav Kotesovec, Sep 16 2021 *)
-
a(n) = my(x=0); forstep(i=n, 2, -1, x = (i-1)^2/((2*i-1)+x);); if (n, denominator(4/(1+x)), denominator(x)); \\ Michel Marcus, Sep 16 2021
Showing 1-7 of 7 results.
Comments