cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A155728 INVERTi transform of A054765: (1, 3, 19, 160, 1744, ...).

Original entry on oeis.org

1, 2, 14, 121, 1383, 19108, 309708, 5751027, 120357325, 2803145494, 71926499002, 2016492639229, 61338391284387, 2012321446421976, 70833707268623448, 2663117961930477847, 106515148705020928105, 4516063573152118802282, 202328834841437929100838
Offset: 1

Views

Author

Keywords

Comments

This sequence convolved with A054765 prefaced with a 1: (1, 1, 3, 19, 160, ...) = (1, 3, 19, 160, ...), equivalent to row sums of triangle A155729 = A054765.

Examples

			We write (1, 3, 19, 160, ...) in reverse: (..., 19, 3, 1), top row.
Bottom row = (1, 2, ...), so that the format for a(3) = 14 becomes: ...3, 1 = A054765: (1, 3, 19, 160, ...). ..., 1, 2 for current format, take dot product = (3*1 + 1*2) = 5, then subtract from next term in A054765, getting (19 - 5) = 14. So a(3) = 14.
Continuing with analogous operations, we get (1, 2, 14, 121, 1383, ...).
		

Crossrefs

Formula

INVERTi transform of A054765 starting with offset 1: (1, 3, 19, 160, 1774, 23184, ...).

Extensions

Corrected by R. J. Mathar, Apr 04 2012
More terms from Alois P. Heinz, Mar 31 2016

A054798 Let N(k) and D(k) be the sequences defined in A054765 and A012244; write N(k)* D(k+j ) - N(k+j)*D(k) = (-1)^(k+1)*(k!)^2*P(k) where P(k) is a polynomial in k of degree j-1; sequence gives coefficients of expansion of P(k) in powers of k for j=1,2,3,...

Original entry on oeis.org

1, 2, 3, 5, 20, 19, 12, 90, 214, 160, 29, 348, 1497, 2718, 1744, 70, 1225, 8236, 26453, 40336, 23184, 169, 4056, 39114, 193184, 512813, 689512, 364176, 408, 12852, 167884, 1174860, 4737628, 10955304, 13372072, 6598656, 985, 39400, 669078, 6282340, 35554929, 123708580, 257200712, 290478120, 135484416, 2378, 117711, 2519024, 30514946, 229958030, 1114357079, 3459179856, 6602445344, 6991966752, 3108695040
Offset: 1

Views

Author

N. J. A. Sloane, May 26 2000

Keywords

Examples

			For j=1,2,3 the polynomials P(k) are 1, 3 + 2 k, 19 + 20 k + 5 k^2.
1;
2,3,
5,20,19,
12,90,214,160,
29,348,1497,2718,1744,
70,1225,8236,26453,40336,23184,
169,4056,39114,193184,512813,689512,364176,
408,12852,167884,1174860,4737628,10955304,13372072,6598656,
985,39400,669078,6282340,35554929,123708580,257200712,290478120,135484416,
2378,117711,2519024,30514946,229958030,1114357079,3459179856,6602445344,6991966752,3108695040,
		

Extensions

Sign corrected by R. J. Mathar, Jul 13 2013

A012244 a(n+2) = (2n+3)*a(n+1) + (n+1)^2*a(n), a(0) = 1, a(1) = 1.

Original entry on oeis.org

1, 1, 4, 24, 204, 2220, 29520, 463680, 8401680, 172504080, 3958113600, 100370793600, 2787459998400, 84139894238400, 2742857884166400, 96034297911552000, 3594206259195552000, 143193586818810528000, 6050501147565883008000, 270263264589232282368000
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of n-letter words from an n-letter alphabet such that no letter appears more than twice. - Paul Boddington, Nov 17 2003

Crossrefs

Programs

  • Maple
    f := proc(n) option remember; if n <= 1 then 1 else (2*n-1)*f(n-1) +(n-1)^2*f(n-2); fi; end;
  • Mathematica
    Range[0,20]! CoefficientList[Series[1/(1-2x-x^2)^(1/2), {x,0,20}], x]  (* Geoffrey Critzer, Dec 07 2011 *)
  • PARI
    {a(n)=local(X=x+x^2*O(x^n));(n+1)!*polcoeff(serreverse(cos(X)+sin(X)-1),n+1)} \\ Paul D. Hanna, Aug 08 2012

Formula

E.g.f.: A(x) = (1 - 2*x - x^2)^(-1/2). - Paul Boddington, Nov 17 2003
a(n) = n!/2^n*A006139(n) = n!*Sum_{k=floor(n/2)..n} 2^(k-n)*C(n, k)*C(k, n-k). Sum_{n>=0} a(n)*x^n/n!^2 = exp(x)*BesselI(0, sqrt(2)*x). a(n) is the central coefficient of n!*(1+x+x^2/2)^n. - Vladeta Jovovic, Mar 22 2004
From Peter Bala, Aug 25 2011: (Start)
The function B(x) := int {t=0..x} A(t), obtained by integrating the generating function A(x), satisfies the autonomous differential equation d/dx(B(x)) = 1/(cos(B(x))-sin(B(x))). Compare with A190392.
Thus B(x), and hence A(x), can be found by inverting the function int {t=0..x} (cos(t)-sin(t)). By applying [Dominici, Theorem 4.1] the result can be expressed as
A(x) = 1 + sum {n>=1} D^n[1/(cos(t)-sin(t))](0)*x^n/n!, where the nested derivative D^n[f](x) of a function f(x) is defined recursively as D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0. Thus a(n) = D^n[1/(cos(t)-sin(t))](0). (End)
E.g.f. at offset 1: Series_Reversion(cos(x) + sin(x) - 1). - Paul D. Hanna, Aug 08 2012
a(n) ~ (1+sqrt(2))^(n+1/2) * n^n / (2^(1/4) * exp(n)). - Vaclav Kotesovec, Feb 18 2017

A054766 a(n+2) = (2*n + 3)*a(n+1) + (n + 1)^2*a(n), a(0) = 1, a(1) = 0.

Original entry on oeis.org

1, 0, 1, 5, 44, 476, 6336, 99504, 1803024, 37019664, 849418560, 21539756160, 598194037440, 18056575823040, 588622339549440, 20609136708249600, 771323264354361600, 30729606721005830400, 1298448658633614566400
Offset: 0

Views

Author

N. J. A. Sloane, May 26 2000

Keywords

Comments

Numerators of the convergents of the generalized continued fraction expansion 4/Pi - 1 = [0; 1/3, 4/5, 9/7,..., n^2/(2*n + 1),...] = 1/(3 + 4/(5 + 9/(7 + ...))). The first 4 convergents are 1/3, 5/19, 44/160 and 476/1744.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n+2] == (2*n+3)*a[n+1] + (n+1)^2*a[n], a[0] == 1, a[1] == 0}, a, {n, 0, 25}] (* Vaclav Kotesovec, Feb 18 2017 *)
    t={1,0};Do[AppendTo[t,(2(n-2)+3)*t[[-1]]+(n-1)^2*t[[-2]]],{n,2,18}];t (* Indranil Ghosh, Feb 25 2017 *)

Formula

a(n) ~ (1 - Pi/4) * (1 + sqrt(2))^(n + 1/2) * n^n / (2^(1/4) * exp(n)). - Vaclav Kotesovec, Feb 18 2017

Extensions

More terms from James Sellers, May 27 2000
Definition expanded by Al Hakanson (hawkuu(AT)gmail.com), Dec 01 2008
Keyword frac added by Michel Marcus, Feb 25 2017

A155729 Triangle read by rows, M * Q; M = (T(n,k) = A155728(n-k+1)); Q = (A155728 * 0^(n-k)).

Original entry on oeis.org

1, 2, 1, 14, 2, 13, 121, 14, 6, 19, 1383, 121, 42, 38, 160, 19108, 1383, 363, 266, 320, 1744, 19108, 1383, 363, 266, 320, 1744, 309708, 19108, 4149, 2299, 2240, 3488, 23184, 2751027, 309708, 57324, 26277, 19360, 24416, 46368, 364176
Offset: 1

Views

Author

Gary W. Adamson & Alexander R. Povolotsky, Jan 25 2009

Keywords

Comments

Row sums = A054765 starting with offset 1: (1, 3, 19, 160, 1744,...).
As a property of eigentriangles, sum of n-th row terms = rightmost term of next row.
A155728 = INVERTi transform of A054765: (1, 3, 19, 160, 1744,...).

Examples

			First few rows of the triangle =
1;
2, 1;
14, 2, 3;
121, 14, 6, 19;
1383, 121, 42, 38, 160;
19108, 1383, 363, 266, 320, 1744;
309708, 19108, 4149, 2299, 2240, 3488, 23184;
2751027, 309708, 57324, 26277, 19360, 24416, 46368, 364176;
...
Example: Row 4 = = (121, 14, 6, 19) termwise products of (121, 14, 2, 1) and (1, 1, 3, 19).
		

Crossrefs

Formula

M = an infinite lower triangular matrix with A155728 in every column:
(1, 2, 14, 121, 1383, 19108, 309708,...).
Q = an infinite lower triangular matrix with A054765 prefaced with a 1:
(1, 1, 3, 19, 160, 1744,...) as the main diagonal and the rest zeros.

A345125 Numerator of 4/(1 + 1^2/(3 + 2^2/(5 + 3^2/(7 + ... + (n-1)^2/(2*n-1) )))).

Original entry on oeis.org

0, 4, 3, 19, 160, 1744, 644, 2529, 183296, 3763456, 4317632, 54743776, 1013549056, 30594128896, 35618973952, 10392576224, 3111643512832, 123968232030208, 48501417558016, 1083228572868608, 4080033616887808, 188557135970304, 3781715948011520
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2021

Keywords

Comments

The limit of a(n)/A345259(n) is Pi.

Examples

			4/(1 + 1^2/(3 + 2^2/5)) = 19/6. So a(3) = 19.
0, 4, 3, 19/6, 160/51, 1744/555, 644/205, 2529/805, 183296/58345, ...
		

Crossrefs

Cf. A012244, A054765, A054766, A345259 (denominator).

Programs

  • Mathematica
    nmax = 25; Join[{0}, Table[4/(1 + ContinuedFractionK[j^2, (2*j + 1), {j, 1, k}]), {k, 0, nmax}] // Numerator] (* Vaclav Kotesovec, Sep 16 2021 *)
  • PARI
    a(n) = my(x=0); forstep(i=n, 2, -1, x = (i-1)^2/((2*i-1)+x);); if (n, numerator(4/(1+x)), numerator(x)); \\ Michel Marcus, Sep 16 2021

Formula

a(n)/A345259(n) = 4 * A054765(n)/A012244(n).

A345259 Denominator of 4/(1 + 1^2/(3 + 2^2/(5 + 3^2/(7 + ... + (n-1)^2/(2*n-1) )))).

Original entry on oeis.org

1, 1, 1, 6, 51, 555, 205, 805, 58345, 1197945, 1374345, 17425485, 322622685, 9738413685, 11337871545, 3308059755, 990466892415, 39460313827935, 15438480702645, 344802363740835, 1298715036217599, 60019600489849, 1203757572990973
Offset: 0

Views

Author

Seiichi Manyama, Sep 16 2021

Keywords

Comments

The limit of A345125(n)/a(n) is Pi.

Examples

			4/(1 + 1^2/(3 + 2^2/5)) = 19/6. So a(3) = 6.
0, 4, 3, 19/6, 160/51, 1744/555, 644/205, 2529/805, 183296/58345, ...
		

Crossrefs

Cf. A012244, A054765, A054766, A345125 (numerator).

Programs

  • Mathematica
    nmax = 25; Join[{1}, Table[4/(1 + ContinuedFractionK[j^2, (2*j + 1), {j, 1, k}]), {k, 0, nmax}] // Denominator] (* Vaclav Kotesovec, Sep 16 2021 *)
  • PARI
    a(n) = my(x=0); forstep(i=n, 2, -1, x = (i-1)^2/((2*i-1)+x);); if (n, denominator(4/(1+x)), denominator(x)); \\ Michel Marcus, Sep 16 2021

Formula

A345125(n)/a(n) = 4 * A054765(n)/A012244(n).
Showing 1-7 of 7 results.