A325201 Square array whose entry A(n,k) is the number of labeled rooted trees on a set of size n where each node has at most k neighbors that are further away from the root than the node itself, for n >= 0, k >= 0, read by descending antidiagonals.
0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 6, 0, 0, 1, 2, 9, 24, 0, 0, 1, 2, 9, 60, 120, 0, 0, 1, 2, 9, 64, 540, 720, 0, 0, 1, 2, 9, 64, 620, 6120, 5040, 0, 0, 1, 2, 9, 64, 625, 7620, 83790, 40320, 0, 0, 1, 2, 9, 64, 625, 7770, 113610, 1345680, 362880, 0, 0, 1, 2, 9, 64, 625, 7776, 117390, 1992480, 24811920, 3628800, 0
Offset: 1
Examples
Array begins: 0 0 0 0 0 ... 0 1 1 1 1 ... 0 2 2 2 2 ... 0 6 9 9 9 ... 0 24 60 64 64 ... 0 120 540 620 625 ... 0 720 6120 7620 7770 ... 0 5040 83790 113610 117390 ... 0 40320 1345680 1992480 2088520 ... 0 362880 24811920 40194000 42771960 ... 0 3628800 516650400 916927200 991090800 ... 0 39916800 11992503600 23341071600 25635767850 ... ...
Links
- B. Otto, Coalescence under Preimage Constraints, arXiv:1903.00542 [math.CO], 2019, Corollaries 5.3 and 7.8.
Crossrefs
Programs
-
Mathematica
e[k_][x_] := Sum[x^j/j!, {j, 0, k}]; A[0, ] = A[, 0] = 0; A[n_, k_] := (n-1)! Coefficient[e[k][x]^n, x, n-1]; Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] (* Jean-François Alcover, Jul 06 2019 *)
-
Python
# print first num_entries entries in column k import math, sympy; x=sympy.symbols('x') k=5; num_entries = 64 P=range(k+1); eP=sum([x**d/math.factorial(d) for d in P]); r = [0,1]; curr_pow = eP for term in range(1, num_entries-1): curr_pow=(curr_pow*eP).expand() r.append(curr_pow.coeff(x**term)*math.factorial(term)) print(r)
Formula
A(n,k) = (n-1)! * [x^(n-1)] e_k(x)^n, where e_k(x) is the truncated exponential 1 + x + x^2/2! + ... + x^k/k!. When k>1, the link above yields explicit constants c_k, r_k so that the columns are asymptotically c_k * n^(-3/2) * r_k^-n. Stirling's approximation gives column k=1, and column k=0 is 0.
Comments