A036775
a(n) is the number of labeled rooted trees on a set of size n where each node has at most 3 neighbors that are further away from the root than the node itself.
Original entry on oeis.org
0, 1, 2, 9, 64, 620, 7620, 113610, 1992480, 40194000, 916927200, 23341071600, 655922836800, 20169411662400, 673645440468000, 24285190867938000, 939899116892736000, 38870133445791648000, 1710655202853140544000, 79826043011286892320000, 3936948118406837614080000, 204621522793150838094720000
Offset: 0
Column k=3 of
A325201; see that entry for sequences related to other preimage constraints constructions. -
Benjamin Otto, Apr 08 2019
-
nn=18;f[x_]:=Sum[a[n]x^n/n!,{n,0,nn}];s=SolveAlways[0==Series[f[x]-x(1+f[x]+f[x]^2/2+f[x]^3/3!),{x,0,nn}],x];Table[a[n],{n,0,nn}]/.s (* Geoffrey Critzer, Mar 22 2013 *)
Table[3*n!*Sum[Binomial[n+1,j]*Sum[Binomial[j,i-j]*2^(4*j-2*n-i-2)*6^(n+i+1)*Binomial[n-j+1,3*j-n-i-2],{i,j,n+j}]/6^(3*j),{j,0,n+1}],{n,0,20}] (* Vaclav Kotesovec after Vladimir Kruchinin, Jan 08 2014 *)
f[r_, n_][x_] := Sum[x^k/k!, {k, 0, r}]^n;
a[n_] := If[n == 1, 1, Derivative[n - 1][f[3, n]][0]];
a /@ Range[0, 21] (* Jean-François Alcover, Apr 20 2020, after Petros Hadjicostas in A036777 *)
-
a(n):=3*n!*sum((binomial(n+1,j)*sum(binomial(j,i-j)*2^(4*j-2*n-i-2)*6^(n+i+1)*binomial(n-j+1,3*j-n-i-2),i,j,n+j))/6^(3*j),j,0,(n+1)); /* Vladimir Kruchinin, Nov 21 2011 */
-
# print first num_entries entries in the sequence
import math, sympy; x=sympy.symbols('x')
k=3; num_entries = 64
P=range(k+1); eP=sum([x**d/math.factorial(d) for d in P]); r = [0,1]; curr_pow = eP
for term in range(1,num_entries-1):
curr_pow=(curr_pow*eP).expand()
r.append(curr_pow.coeff(x**term)*math.factorial(term))
print(r) # Benjamin Otto, Apr 08 2019
A036776
a(n) is the number of labeled rooted trees on a set of size n where each node has at most 4 neighbors that are further away from the root than the node itself.
Original entry on oeis.org
0, 1, 2, 9, 64, 625, 7770, 117390, 2088520, 42771960, 991090800, 25635767850, 732235165200, 22890759391500, 777398836414200, 28501053507927000, 1121908690738836000, 47194400446765572000, 2112854517933207048000, 100302903229033765260000, 5032863920347902999360000
Offset: 0
-
nn=18;f[x_]:=Sum[a[n]x^n/n!,{n,0,nn}];s=SolveAlways[0==Series[f[x]-x(1+f[x]+f[x]^2/2+f[x]^3/3!+f[x]^4/4!),{x,0,nn}],x];Table[a[n],{n,0,nn}]/.s (* Geoffrey Critzer, Mar 23 2013 *)
f[r_, n_][x_] := Sum[x^k/k!, {k, 0, r}]^n;
a[n_] := If[n == 1, 1, Derivative[n-1][f[4, n]][0]];
a /@ Range[0, 20] (* Jean-François Alcover, Apr 20 2020, after Petros Hadjicostas in A036777 *)
-
a(n):=(n!*sum(binomial(n+1,r)*sum(binomial(r,m)*sum(binomial(j,-r+n-m-j)*2^(2*r-2*n+m+2*j)*binomial(m,j)*(3)^(-j),j,0,m),m,0,r),r,0,n+1)); /* Vladimir Kruchinin, Nov 22 2011 */
-
# print first num_entries entries in the sequence
import math, sympy; x=sympy.symbols('x')
k=4; num_entries = 64
P=range(k+1); eP=sum([x**d/math.factorial(d) for d in P]); r = [0,1]; curr_pow = eP
for term in range(1,num_entries-1):
curr_pow=(curr_pow*eP).expand()
r.append(curr_pow.coeff(x**term)*math.factorial(term))
print(r) # Benjamin Otto, Apr 11 2019
A325205
a(n) is the number of labeled rooted trees on a set of size n where each node has at most 6 neighbors that are further away from the root than the node itself.
Original entry on oeis.org
0, 1, 2, 9, 64, 625, 7776, 117649, 2097144, 43046136, 999970020, 25936053990, 742947675624, 23295384644532, 793591829158128, 29187143427692250, 1152639088016576160, 48646833059722978080, 2185150741063924810176, 104085328898784937079376, 5240461483486301616704160
Offset: 0
Column k=6 of
A325201; see that entry for sequences related to other preimage constraints constructions.
-
# print first num_entries entries in the sequence
import math, sympy; x=sympy.symbols('x')
k=6; num_entries = 64
P=range(k+1); eP=sum([x**d/math.factorial(d) for d in P]); r = [0,1]; curr_pow = eP
for term in range(1,num_entries-1):
curr_pow=(curr_pow*eP).expand()
r.append(curr_pow.coeff(x**term)*math.factorial(term))
print(r)
A325206
a(n) is the number of labeled rooted trees on a set of size n where each node has at most 7 neighbors that are further away from the root than the node itself.
Original entry on oeis.org
0, 1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046712, 999999180, 25937373990, 743005653984, 23297946618804, 793707788417544, 29192570114517810, 1152902963147295360, 48660197610533102880, 2185856466420637543104, 104124189019562479248624, 5242691958381764070687360
Offset: 0
Column k=7 of
A325201; see that entry for sequences related to other preimage constraints constructions.
-
# print first num_entries entries in the sequence
import math, sympy; x=sympy.symbols('x')
k=7; num_entries = 64
P=range(k+1); eP=sum([x**d/math.factorial(d) for d in P]); r = [0,1]; curr_pow = eP
for term in range(1,num_entries-1):
curr_pow=(curr_pow*eP).expand()
r.append(curr_pow.coeff(x**term)*math.factorial(term))
print(r)
A325207
a(n) is the number of labeled rooted trees on a set of size n where each node has at most 8 neighbors that are further away from the root than the node itself.
Original entry on oeis.org
0, 1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 999999990, 25937423490, 743008289364, 23298080054964, 793714478374818, 29192909282466930, 1152920554828545360, 48661137306426044400, 2185908358103092063584, 104127157513055758393026, 5242868049702388548952080
Offset: 0
Column k=8 of
A325201; see that entry for sequences related to other preimage constraints constructions.
-
# print first num_entries entries in the sequence
import math, sympy; x=sympy.symbols('x')
k=8; num_entries = 64
P=range(k+1); eP=sum([x**d/math.factorial(d) for d in P]); r = [0,1]; curr_pow = eP
for term in range(1,num_entries-1):
curr_pow=(curr_pow*eP).expand()
r.append(curr_pow.coeff(x**term)*math.factorial(term))
print(r)
A325208
a(n) is the number of labeled rooted trees on a set of size n where each node has at most 9 neighbors that are further away from the root than the node itself.
Original entry on oeis.org
0, 1, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000, 25937424590, 743008369224, 23298084997044, 793714764270428, 29192925433321650, 1152921466989795360, 48661189511753527280, 2185911410555033096364, 104127340753401006230046, 5242879377215160617336400
Offset: 0
Column k=9 of
A325201; see that entry for sequences related to other preimage constraints constructions.
-
e[k_][x_] := Sum[x^j/j!, {j, 0, k}];
a[0] = 0; a[n_] := (n - 1)! Coefficient[e[9][x]^n, x, n - 1];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 06 2019 *)
-
# print first num_entries entries in the sequence
import math, sympy; x=sympy.symbols('x')
k=9; num_entries = 64
P=range(k+1); eP=sum([x**d/math.factorial(d) for d in P]); r = [0,1]; curr_pow = eP
for term in range(1,num_entries-1):
curr_pow=(curr_pow*eP).expand()
r.append(curr_pow.coeff(x**term)*math.factorial(term))
print(r)
Showing 1-6 of 6 results.
Comments