A181731
Table A(d,n) of the number of paths of a chess rook in a d-dimensional hypercube from (0...0) to (n...n) where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 6, 14, 4, 1, 24, 222, 106, 8, 1, 120, 6384, 9918, 838, 16, 1, 720, 291720, 2306904, 486924, 6802, 32, 1, 5040, 19445040, 1085674320, 964948464, 25267236, 56190, 64, 1, 40320, 1781750880, 906140159280, 4927561419120, 439331916888, 1359631776, 470010, 128, 1, 362880, 214899027840, 1224777388630320, 54259623434853360
Offset: 1
A(3,1) = 6 because there are 6 rook paths on 3D chessboards from (0,0,0) to (1,1,1).
Square table A(d,n) begins:
1, 1, 2, 4, 8, ...
1, 2, 14, 106, 838, ...
1, 6, 222, 9918, 486924, ...
1, 24, 6384, 2306904, 964948464, ...
1, 120, 291720, 1085674320, 4927561419120, ...
Rows d=1-12 give:
A011782,
A051708 (from [1,1]),
A144045 (from [1,1,1]),
A181749,
A181750,
A181751,
A181752,
A181724,
A181725,
A181726,
A181727,
A181728.
-
b:= proc(l) option remember; `if`({l[]} minus {0}={}, 1, add(add
(b(sort(subsop(i=l[i]-j, l))), j=1..l[i]), i=1..nops(l)))
end:
A:= (d, n)-> b([n$d]):
seq(seq(A(h-n, n), n=0..h-1), h=1..10); # Alois P. Heinz, Jul 21 2012
-
b[l_List] := b[l] = If[Union[l] ~Complement~ {0} == {}, 1, Sum[ Sum[ b[ Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, Length[l]}]]; A[d_, n_] := b[Array[n&, d]]; Table[Table[A[h-n, n], {n, 0, h-1}], {h, 1, 10}] // Flatten (* Jean-François Alcover, Feb 25 2015, after Alois P. Heinz *)
A051708
Number of ways to move a chess rook from the lower left corner to square (n,n), with the rook moving only up or right.
Original entry on oeis.org
1, 2, 14, 106, 838, 6802, 56190, 470010, 3968310, 33747490, 288654574, 2480593546, 21400729382, 185239360178, 1607913963614, 13991107041306, 122002082809110, 1065855419418690, 9327252391907790, 81744134786314410, 717367363052796678, 6303080714967178962
Offset: 1
Joe Keane (jgk(AT)jgk.org)
G.f. = x + 2*x^2 + 14*x^3 + 106*x^4 + 838*x^5 + 6802*x^6 + 56190*x^7 + ...
- Posting to newsgroup rec.puzzles, Dec 03 1999 by Nick Wedd (Nick(AT)maproom.co.uk).
- Muniru A Asiru, Table of n, a(n) for n = 1..1000 (first 325 terms from Alois P. Heinz)
- Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d'Informatique de Paris Nord, Université Paris 13, December 2017.
- "flawr", (Programming Puzzles & Code Golf Stack Exchange user), Partitioning the grid into triangles
- E. Yu Jin and M. E. Nebel, A combinatorial proof of the recurrence for rook paths, Electronic J. Comb. 19 (2012) #P57.
- M. Kauers and D. Zeilberger, The Computational Challenge of Enumerating High-Dimensional Rook Walks, arXiv:1011.4671 [math.CO], 2010.
- Alexander R. Povolotsky, MathOverflow, Are two formulas related to A051708 equivalent?, 2025.
- Nick Webb, Thread in newsgroup rec.puzzles, Dec 03 1999. [Broken link]
Main diagonal of the square array given in
A035002.
First differences of (
A084771-1)/2.
-
a:=[1,2];; for n in [3..25] do a[n]:=((10*n-16)*a[n-1]-(9*n-27)*a[n-2])/(n-1); od; a; # Muniru A Asiru, Nov 30 2018
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( ((x*(1-x))/(Sqrt(1-10*x+9*x^2))+x)/2 )); // G. C. Greubel, Dec 01 2018
-
a:= proc(n) option remember;
`if`(n<3, n, ((10*n-16)*a(n-1)-(9*n-27)*a(n-2))/(n-1))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Jul 21 2012
-
CoefficientList[Series[(9*x^2 - Sqrt[9*x^2-10*x+1]*x-x) / (2*(9*x-1)), {x,0,20}],x] // Rest (* Jean-François Alcover, Mar 30 2011, after g.f. given by Ralf Stephan *)
RecurrenceTable[{a[1]==1,a[2]==2,a[n]==((10n-16)a[n-1]-(9n-27)a[n-2])/ (n-1)},a,{n,30}] (* Harvey P. Dale, Sep 28 2013 *)
-
a(n):=sum(binomial(n-1,n-i)*sum(binomial(k+i,i)*binomial(n-1,n-k),k,0,n),i,0,n); /* Vladimir Kruchinin, Apr 20 2015 */
-
{a(n) = if( n<1, 0, n--; polcoeff( 1/2 + (1 - x) / (2 * sqrt( 1 - 10*x + 9*x^2 + x * O(x^n) ) ), n ) )} /* Michael Somos, Jan 08 2011 */
-
a(n) = n--; sum(i=0,n, binomial(n-1, n-i)*sum(k=0, n, binomial(k+i, i)*binomial(n-1, n-k))); \\ Michel Marcus, Apr 20 2015
Showing 1-2 of 2 results.
Comments