cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A172391 G.f. satisfies: A(x) = G(x/A(x))^2 and G(x)^2 = A(x*G(x)^2) where G(x) = Sum_{n>=0} C(2*n,n)*C(2*n+2,n+1)/(n+2)*x^n is the g.f. of A172392.

Original entry on oeis.org

1, 8, 12, 0, 28, 0, 264, 0, 3720, 0, 63840, 0, 1232432, 0, 25731216, 0, 568130552, 0, 13081215840, 0, 311178567648, 0, 7597974517056, 0, 189518147463232, 0, 4811962763222784, 0, 124028853694440640, 0, 3238304402221646880, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2010

Keywords

Examples

			G.f.: A(x) = 1 + 8*x + 12*x^2 + 28*x^4 + 264*x^6 + 3720*x^8 +...
where A(x) = G(x/A(x))^2 where G(x) is the g.f. of A172392:
G(x) = 1 + 4*x + 30*x^2 + 280*x^3 + 2940*x^4 + 33264*x^5 +...+ A172392(n)*x^n +...
G(x) = 1 + 2*2*x + 5*6*x^2 + 14*20*x^3 + 42*70*x^4 + 132*252*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(G=sum(m=0,n,binomial(2*m,m)*binomial(2*m+2,m+1)/(m+2)*x^m)+x*O(x^n));polcoeff(x/serreverse(x*G^2),n)}

Formula

G.f.: A(x) = x/Series_Reversion(x*G(x)^2) where G(x) is the g.f. of A172392(n) = A000108(n+1)*A000984(n).
Self-convolution of A172393.

A172393 G.f. satisfies: A(x) = G(x/A(x)^2) and G(x) = A(x*G(x)^2) = Sum_{n>=0} C(2n,n)*C(2n+2,n+1)/(n+2)*x^n is the g.f. of A172392.

Original entry on oeis.org

1, 4, -2, 8, -20, 96, -324, 1648, -6348, 33200, -137848, 732640, -3193296, 17148608, -77335400, 418289696, -1934677436, 10518803376, -49611450120, 270796872160, -1297234193744, 7102371571840, -34458382484976, 189117499963840
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2010

Keywords

Examples

			G.f.: A(x) = 1 + 4*x - 2*x^2 + 8*x^3 - 20*x^4 + 96*x^5 - 324*x^6 +...
A(x)^2 = 1 + 8*x + 12*x^2 + 28*x^4 + 264*x^6 + 3720*x^8 +...
where A(x)^2 equals the g.f. of A172391:
A172391=[1,8,12,0,28,0,264,0,3720,0,63840,0,1232432,0,25731216,0,...].
Let G(x) = A(x*G(x)^2) = Sum_{n>=0} C(2n+2,n+1)/(n+2)*C(2n,n)*x^n:
G(x) = 1 + 2*2*x + 5*6*x^2 + 14*20*x^3 + 42*70*x^4 + 132*252*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(G=sum(m=0,n,binomial(2*m,m)*binomial(2*m+2,m+1)/(m+2)*x^m)+x*O(x^n));polcoeff((x/serreverse(x*G^2))^(1/2),n)}

Formula

G.f. satisfies: A(x) = Sum_{n>=0} A000108(n+1)*A000984(n)*x^n/A(x)^(2n), where A000108 is the Catalan numbers and A000984 is the central binomial coefficients.
Self-convolution equals A172391.

A352687 Triangle read by rows, a Narayana related triangle whose rows are refinements of twice the Catalan numbers (for n >= 2).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 4, 1, 0, 1, 7, 12, 7, 1, 0, 1, 11, 30, 30, 11, 1, 0, 1, 16, 65, 100, 65, 16, 1, 0, 1, 22, 126, 280, 280, 126, 22, 1, 0, 1, 29, 224, 686, 980, 686, 224, 29, 1, 0, 1, 37, 372, 1512, 2940, 2940, 1512, 372, 37, 1
Offset: 0

Views

Author

Peter Luschny, Apr 26 2022

Keywords

Comments

This is the second triangle in a sequence of Narayana triangles. The first is A090181, whose n-th row is a refinement of Catalan(n), whereas here the n-th row of T is a refinement of 2*Catalan(n-1). We can show that T(n, k) <= A090181(n, k) for all n, k. The third triangle in this sequence is A353279, where also a recurrence for the general case is given.
Here we give a recurrence for the row polynomials, which correspond to the recurrence of the classical Narayana polynomials combinatorially proved by Sulanke (see link).
The polynomials have only real zeros and form a Sturm sequence. This follows from the recurrence along the lines given in the Chen et al. paper.
Some interesting sequences turn out to be the evaluation of the polynomial sequence at a fixed point (see the cross-references), for example the reversion of the Jacobsthal numbers A001045 essentially is -(-2)^n*P(n, -1/2).
The polynomials can also be represented as the difference between generalized Narayana polynomials, see the formula section.

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1,  1;
[3] 0, 1,  2,   1;
[4] 0, 1,  4,   4,   1;
[5] 0, 1,  7,  12,   7,   1;
[6] 0, 1, 11,  30,  30,  11,   1;
[7] 0, 1, 16,  65, 100,  65,  16,   1;
[8] 0, 1, 22, 126, 280, 280, 126,  22,  1;
[9] 0, 1, 29, 224, 686, 980, 686, 224, 29, 1;
		

Crossrefs

Cf. A090181 and A001263 (Narayana), A353279 (case 3), A000108 (Catalan), A145596, A172392 (central terms), A000124 (subdiagonal, column 2), A115143.
Essentially twice the Catalan numbers: A284016 (also A068875, A002420).
Values of the polynomial sequence: A068875 (row sums): P(1), A154955: P(-1), A238113: P(2)/2, A125695 (also A152681): P(-2), A054872: P(3)/2, P(3)/6 probable A234939, A336729: P(-3)/6, A082298: P(4)/5, A238113: 2^n*P(1/2), A154825 and A091593: 2^n*P(-1/2).

Programs

  • Maple
    T := (n, k) -> if n = k then 1 elif k = 0 then 0 else
    binomial(n, k)^2*(k*(2*k^2 + (n + 1)*(n - 2*k))) / (n^2*(n - 1)*(n - k + 1)) fi:
    seq(seq(T(n, k), k = 0..n), n = 0..10);
    # Alternative:
    gf := 1 - x + (1 + y)*(1 - x*(y - 1) - sqrt((x*y + x - 1)^2 - 4*x^2*y))/2:
    serx := expand(series(gf, x, 16)): coeffy := n -> coeff(serx, x, n):
    seq(seq(coeff(coeffy(n), y, k), k = 0..n), n = 0..10);
    # Using polynomial recurrence:
    P := proc(n, x) option remember; if n < 3 then [1, x, x + x^2] [n + 1] else
    ((2*n - 3)*(x + 1)*P(n - 1, x) - (n - 3)*(x - 1)^2*P(n - 2, x)) / n fi end:
    Trow := n -> seq(coeff(P(n, x), x, k), k = 0..n): seq(Trow(n), n = 0..10);
    # Represented by generalized Narayana polynomials:
    N := (n, k, x) -> add(((k+1)/(n-k))*binomial(n-k,j-1)*binomial(n-k,j+k)*x^(j+k), j=0..n-2*k): seq(print(ifelse(n=0, 1, expand(N(n,0,x) - N(n,1,x)))), n=0..7);
  • Mathematica
    H[0, ] := 1; H[1, x] := x;
    H[n_, x_] := x*(x + 1)*Hypergeometric2F1[1 - n, 2 - n, 2, x];
    Hrow[n_] := CoefficientList[H[n, x], x]; Table[Hrow[n], {n, 0, 9}] // TableForm
  • Python
    from math import comb as binomial
    def T(n, k):
        if k == n: return 1
        if k == 0: return 0
        return ((binomial(n, k)**2 * (k * (2 * k**2 + (n + 1) * (n - 2 * k))))
               // (n**2 * (n - 1) * (n - k + 1)))
    def Trow(n): return [T(n, k) for k in range(n + 1)]
    for n in range(10): print(Trow(n))
    
  • Python
    # The recursion with cache is (much) faster:
    from functools import cache
    @cache
    def T_row(n):
        if n < 3: return ([1], [0, 1], [0, 1, 1])[n]
        A = T_row(n - 2) + [0, 0]
        B = T_row(n - 1) + [1]
        for k in range(n - 1, 1, -1):
            B[k] = (((B[k] + B[k - 1]) * (2 * n - 3)
                   - (A[k] - 2 * A[k - 1] + A[k - 2]) * (n - 3)) // n)
        return B
    for n in range(10): print(T_row(n))

Formula

Explicit formula (additive form):
T(n, n) = 1, T(n > 0, 0) = 0 and otherwise T(n, k) = binomial(n, k)*binomial(n - 1, k - 1)/(n - k + 1) - 2*binomial(n - 1, k)*binomial(n - 1, k - 2)/(n - 1).
Multiplicative formula with the same boundary conditions:
T(n, k) = binomial(n, k)^2*(k*(2*k^2 + (n + 1)*(n - 2*k)))/(n^2*(n-1)*(n- k + 1)).
Bivariate generating function:
T(n, k) = [x^n] [y^k](1 - x + (1+y)*(1-x*(y-1) - sqrt((x*y+x-1)^2 - 4*x^2*y))/2).
Recursion based on polynomials:
T(n, k) = [x^k] (((2*n - 3)*(x + 1)*P(n - 1, x) - (n - 3)*(x - 1)^2*P(n - 2, x)) / n) with P(0, x) = 1, P(1, x) = x, and P(2, x) = x + x^2.
Recursion based on rows (see the second Python program):
T(n, k) = (((B(k) + B(k-1)) * (2*n - 3) - (A(k) - 2*A(k-1) + A(k-2))*(n-3))/n), where A(k) = T(n-2, k) and B(k) = T(n-1, k), for n >= 3.
Hypergeometric representation:
T(n, k) = [x^k] x*(x + 1)*hypergeom([1 - n, 2 - n], [2], x) for n >= 2.
Row sums:
Sum_{k=0..n} T(n, k) = (2/n)*binomial(2*(n - 1), n - 1) = A068875(n-1) for n >= 2.
A generalization of the Narayana polynomials is given by
N{n, k}(x) = Sum_{j=0..n-2*k}(((k + 1)/(n - k)) * binomial(n - k, j - 1) * binomial(n - k, j + k) * x^(j + k)).
N{n, 0}(x) are the classical Narayana polynomials A001263 and N{n, 1}(x) is a shifted version of A145596 based in (3, 2). Our polynomials are the difference P(n, x) = N{n, 0}(x) - N{n, 1}(x) for n >= 1.
Let RS(T, n) denote the row sum of the n-th row of T, then RS(T, n) - RS(A090181, n) = -4*binomial(2*n - 3, n - 3)/(n + 1) = A115143(n + 1) for n >= 3.

A185248 Expansion of 3F2( (1/2, 3/2, 5/2); (3, 5))(64 x).

Original entry on oeis.org

1, 8, 140, 3360, 97020, 3171168, 113369256, 4338459840, 175165316040, 7385525026880, 322747443674656, 14534919841012480, 671591162296782000, 31725844951938480000, 1527939354203180010000, 74847268228930016688000, 3722092276301165621547000
Offset: 0

Views

Author

Olivier Gérard, Feb 15 2011

Keywords

Comments

Generalization of formula for A172392.
Combinatorial interpretation welcome.

Crossrefs

Cf. A172392.

Programs

  • Mathematica
    CoefficientList[Series[HypergeometricPFQ[{1/2, 3/2, 5/2}, {3, 5}, 64 x], {x, 0, 20}], x]
    Table[16 * (2*n+3) * (2*n+1)^2 * (2*n)!^3 / (n!^4 * (n+2)! * (n+4)!), {n, 0, 20}] (* Vaclav Kotesovec, Feb 17 2024 *)

Formula

D-finite with recurrence +n*(n+4)*(n+2)*a(n) -8*(2*n+3)*(2*n+1)*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jul 27 2022
From Vaclav Kotesovec, Feb 17 2024: (Start)
a(n) = 16 * (2*n+3) * (2*n+1)^2 * (2*n)!^3 / (n!^4 * (n+2)! * (n+4)!).
a(n) ~ 2^(6*n + 7) / (Pi^(3/2) * n^(9/2)). (End)

A186266 Expansion of 2F1( 1/2, 3/2; 4; 16*x ).

Original entry on oeis.org

1, 3, 18, 140, 1260, 12474, 132132, 1472328, 17065620, 204155380, 2506399896, 31443925968, 401783498480, 5215458874500, 68633685693000, 914099013896400, 12304253831789700, 167193096184907100, 2291164651422801000, 31637804708163654000, 439903041116118980400
Offset: 0

Views

Author

Olivier Gérard, Feb 16 2011

Keywords

Comments

Combinatorial interpretation welcome.
Could involve planar maps, lattice walks, and interpretations of Catalan numbers.

Crossrefs

Formula close to A000257, A000888, A172392.
Cf. A000108.

Programs

  • Mathematica
    CoefficientList[
    Series[HypergeometricPFQ[{1/2, 3/2}, {4}, 16*x], {x, 0, 20}], x]
    Table[3 CatalanNumber[n] CatalanNumber[n+1] * (n+1) / (n+3), {n, 0, 20}] (* Indranil Ghosh, Mar 05 2017 *)
  • PARI
    c(n) = binomial(2*n,n) / (n+1);
    a(n) = 3 * c(n) * c(n+1) *(n+1) / (n+3); \\ Indranil Ghosh, Mar 05 2017
    
  • Python
    import math
    f=math.factorial
    def C(n,r): return f(n) / f(r) / f(n-r)
    def Catalan(n): return C(2*n, n) / (n+1)
    def A186266(n): return 3 * Catalan(n) * Catalan(n+1) * (n+1) / (n+3) # Indranil Ghosh, Mar 05 2017

Formula

a(n) = 3*A000108(n)*A000108(n+1)*(n+1)/(n+3). - David Scambler, Aug 18 2012
D-finite with recurrence n*(n+3)*a(n) -4*(2*n-1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Jun 17 2016

A254633 a(n) = 16^n*[x^n]hypergeometric([3/2, -2*n], [3], -x).

Original entry on oeis.org

1, 16, 480, 17920, 752640, 34062336, 1623638016, 80408739840, 4100845731840, 214072431738880, 11388653368508416, 615465127495335936, 33704042696173158400, 1866685441634205696000, 104401050057113075712000, 5889038054986331298201600, 334693662791723162114457600
Offset: 0

Views

Author

Peter Luschny, Feb 03 2015

Keywords

Crossrefs

Programs

  • Maple
    a := n -> 16^n*coeff(simplify(hypergeom([3/2, -2*n], [3], -x)), x, n):
    seq(a(n), n=0..16);
    a_list := len -> seq(coeff(series(hypergeom([1/2, 3/2],[3],64*x),x,len+1),x,n),n=0..len);
    a_list(16);

Formula

a(n) = 4^n*C(2*n,n)*C(2*n+2,n+1)/(n+2).
a(n) = (2^(6*n+2)*Gamma(n+1/2)*Gamma(n+3/2))/(Pi*Gamma(n+1)*Gamma(n+3)).
a(n) = A254632(2*n,n).
a(n) = 4^n * A172392(n).
a(n) = [x^n]hypergeom([1/2, 3/2], [3], 64*x).
a(n) = a(n-1)*( 16*(4*n^2-1)/(n*(n+2)) ) for n >= 1.
Showing 1-6 of 6 results.