cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A172392 a(n) = C(2n,n)*C(2n+2,n+1)/(n+2).

Original entry on oeis.org

1, 4, 30, 280, 2940, 33264, 396396, 4907760, 62573940, 816621520, 10861066216, 146738321184, 2008917492400, 27815780664000, 388924218927000, 5484594083378400, 77926940934668100, 1114620641232714000
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2010

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 30*x^2 + 280*x^3 + 2940*x^4 + 33264*x^5 +...
A(x) = 1 + 2*2*x + 5*6*x^2 + 14*20*x^3 + 42*70*x^4 + 132*252*x^5 +...
where A(x)^2 = G(x*A(x)^2) and G(x) = A(x/G(x))^2 = g.f. of A172391:
A172391=[1,8,12,0,28,0,264,0,3720,0,63840,0,1232432,0,25731216,0,...].
		

Crossrefs

Programs

  • Maple
    A172392 := n -> 4^n*coeff(simplify(hypergeom([3/2, -2*n], [3], -x)),x,n):
    seq(A172392(n), n=0..17); # Peter Luschny, Feb 03 2015
  • Mathematica
    CoefficientList[
    Series[HypergeometricPFQ[{1/2, 3/2}, {3}, 16 x], {x, 0, 20}], x] (* From Olivier Gérard, Feb 15 2011 *)
    Table[(Binomial[2n,n]Binomial[2n+2,n+1])/(n+2),{n,0,30}] (* Harvey P. Dale, Jul 16 2012 *)
  • PARI
    {a(n)=binomial(2*n,n)*binomial(2*n+2,n+1)/(n+2)}

Formula

G.f. A(X) satisfies: A(x)^2 = G(x*A(x)^2) and G(x) = A(x/G(x))^2 = g.f. of A172391.
G.f. A(X) satisfies: A(x) = G(x*A(x)^2) and G(x) = A(x/G(x)^2) = g.f. of A172393.
a(n) = (n+1)*A005568(n) = A000108(n+1)*A000984(n), where A000108 is the Catalan numbers and A000984 is the central binomial coefficients.
G.f. : 2F1( (1/2, 3/2); (3))(16 x). - Olivier Gérard Feb 15 2011
a(n) = 4^n*[x^n]hypergeom([3/2, -2*n], [3], -x). - Peter Luschny, Feb 03 2015
D-finite with recurrence a(n) = a(n-1)*( 4*(4*n^2-1)/(n*(n+2)) ) for n>=1. - Peter Luschny, Feb 04 2015

A172391 G.f. satisfies: A(x) = G(x/A(x))^2 and G(x)^2 = A(x*G(x)^2) where G(x) = Sum_{n>=0} C(2*n,n)*C(2*n+2,n+1)/(n+2)*x^n is the g.f. of A172392.

Original entry on oeis.org

1, 8, 12, 0, 28, 0, 264, 0, 3720, 0, 63840, 0, 1232432, 0, 25731216, 0, 568130552, 0, 13081215840, 0, 311178567648, 0, 7597974517056, 0, 189518147463232, 0, 4811962763222784, 0, 124028853694440640, 0, 3238304402221646880, 0
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2010

Keywords

Examples

			G.f.: A(x) = 1 + 8*x + 12*x^2 + 28*x^4 + 264*x^6 + 3720*x^8 +...
where A(x) = G(x/A(x))^2 where G(x) is the g.f. of A172392:
G(x) = 1 + 4*x + 30*x^2 + 280*x^3 + 2940*x^4 + 33264*x^5 +...+ A172392(n)*x^n +...
G(x) = 1 + 2*2*x + 5*6*x^2 + 14*20*x^3 + 42*70*x^4 + 132*252*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(G=sum(m=0,n,binomial(2*m,m)*binomial(2*m+2,m+1)/(m+2)*x^m)+x*O(x^n));polcoeff(x/serreverse(x*G^2),n)}

Formula

G.f.: A(x) = x/Series_Reversion(x*G(x)^2) where G(x) is the g.f. of A172392(n) = A000108(n+1)*A000984(n).
Self-convolution of A172393.
Showing 1-2 of 2 results.