A141318 Euler transform of A025225.
1, 2, 7, 28, 139, 762, 4549, 28464, 184742, 1230348, 8362298, 57756888, 404218046, 2860222020, 20428192842, 147072637472, 1066221149519, 7776835940430, 57028407361537, 420199462347876, 3109418928328473, 23098206138595710, 172184651286785655, 1287629984135461888
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- J.-C. Novelli and J.-Y. Thibon, Free quasi-symmetric functions and descent algebras for wreath products and noncommutative multi-symmetric functions, arXiv:0806.3682 [math.CO], 2008.
Crossrefs
Cf. A025225.
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add((2^d)*binomial(2*d-2,d-1), d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..30); # Alois P. Heinz, Jan 27 2012
-
Mathematica
a[n_] := a[n] = If[n==0, 1, Sum[Sum[2^d*Binomial[2*d-2, d-1], {d, Divisors[ j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)
Formula
a(n) ~ c * 8^n / n^(3/2), where c = 0.23667440081254669364903300472... . - Vaclav Kotesovec, Sep 04 2014
Extensions
a(0)=1 prepended by Alois P. Heinz, Jul 28 2017
Comments