cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A103978 Expansion of (sqrt(1-12*x^2)+12*x^2+2*x-1)/(2*x*sqrt(1-12*x^2)).

Original entry on oeis.org

1, 3, 6, 9, 54, 54, 540, 405, 5670, 3402, 61236, 30618, 673596, 288684, 7505784, 2814669, 84440070, 28146690, 956987460, 287096238, 10909657044, 2975361012, 124965162504, 31241290626, 1437099368796, 331638315876, 16581915793800
Offset: 0

Views

Author

Paul Barry, Feb 23 2005

Keywords

Crossrefs

Programs

  • Maple
    rec:= -(n+1)*a(n)+2*(n-1)*a(n-1)+12*(2*n-3)*a(n-2)+24*(2-n)*a(n-3)+144*(4-n)*a(n-4):
    f:= gfun:-rectoproc({rec=0,a(0) = 1, a(1) = 3, a(2) = 6, a(3) = 9},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Sep 13 2020
  • Mathematica
    CoefficientList[Series[(Sqrt[1-12x^2]+12x^2+2x-1)/(2x Sqrt[1-12x^2]),{x,0,30}],x] (* Harvey P. Dale, Aug 06 2022 *)

Formula

G.f.: 1/sqrt(1-12*x^2)+(1-sqrt(1-12*x^2))/(2*x).
a(n) = sum{k=0..floor(n/2), 3^(n-k) * A000108(k) * C(k+1, n-k)}.
D-finite with recurrence: -(n+1)*a(n)+2*(n-1)*a(n-1) +12*(2n-3)*a(n-2) +24(2-n)*a(n-3) + 144*(4-n)*a(n-4)=0. - R. J. Mathar, Dec 14 2011
a(n) ~ 2^(n + 1/2) * 3^(n/2) / sqrt(Pi*n) if n is even and a(n) ~ 2^(n + 1/2) * 3^((n+1)/2) / (sqrt(Pi) * n^(3/2)) if n is odd. - Vaclav Kotesovec, Nov 19 2021
Showing 1-1 of 1 results.