cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A141319 INVERTi transform of A141318.

Original entry on oeis.org

2, 3, 8, 46, 252, 1558, 9800, 64115, 428546, 2921527, 20220128, 141746372, 1004278856, 7180301580, 51739691584, 375370204876, 2739615168344, 20100885190508, 148179065429664, 1096966770610372, 8151826588836472, 60787793832205004, 454719634089674432
Offset: 1

Views

Author

Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008

Keywords

Comments

Number of generators of degree n of the primitive Lie algebra of the Hopf algebra of 2-colored planar binary trees.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember;
          `if`(n=0, 1, add(add((2^d)*binomial(2*d-2,d-1),
                       d=divisors(j)) *b(n-j), j=1..n)/n)
        end:
    a:= proc(n) option remember;
          `if`(n<1, -1, -add(a(n-i) *b(i), i=1..n))
        end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Jan 27 2012
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, Sum[Sum[2^d*Binomial[2*d-2, d-1], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; a[n_] := a[n] = If[n<1, -1, -Sum[a[n-i]* b[i], {i, 1, n}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)
Showing 1-1 of 1 results.